• Title/Summary/Keyword: Paste Flow

Search Result 154, Processing Time 0.026 seconds

A Fundamental Study on the Properties of Cement Collected at Different Process Line (시멘트 분쇄공정별 물성에 관한 기초적 연구)

  • Kim, Jong-Back;Cha, Wan-Ho;Kwon, O-Bong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.111-114
    • /
    • 2006
  • This paper is to investigate the chemical composition and physical properties of cements collected at different crushing process line of ordinary portland cement to verify the possibility for producing special purpose cement based on the particle distribution technique. According to test results, six different cement samples with different blaine were gathered. loss on ignition and chemical composition of cements gathered were satisfied with KS L 5201. Cement collected at line 5 had the lowest blaine value while cement at line 4 had the highest blaine value. The coarser the cement particle is, the larger the fluidity of cement is. The compressive strength of cement was highly affected by the blaine value of cement. It is confirmed that the use of cement produced by the process of particle distribution control may be applied for special purpose cement without modification of chemical composition.

  • PDF

The Study on the Properties of Calcined Oyster Shell & Hwang-To Powder (황토를 혼합 소성한 굴패각 미분말의 물성에 관한 연구)

  • Jung, Joo-hyung;Park, Min-Soo;Jung, Min-Soo;Kim, Hyo-Youl;Kang, Byung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.41-44
    • /
    • 2007
  • Recently, the strenuous industrial waste is scattered and one of the oyster also make the serious environmental contamination. The purpose of this study is investigating an utilization ability as calcium binder of the oyster with Hwang-To according to a rate(10%, 20%, 30%, 40%, 50%). This study grasp physical properties of the oyster powder, bake production of the paste, and conduct the flow test, stiff time test and strength test. According to baking condition, strength of $1000^{\circ}C$(120minutes, rate 30%) is higher than any other condition. The oyster powder from above $900^{\circ}C$ seem possibility as binder hereafter. It is thought that the continuous research will be necessary.

  • PDF

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

Performance Analysis of Cement Paste Including Generic and Low-viscosity Type High Range Water Reducer (저점도형 감수제 및 고성능 감수제의 사용에 따른 시멘트 페이스트 성능 분석)

  • Son, Bae-Geun;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.32-33
    • /
    • 2017
  • In order to improve the flow performance of high performance concrete, use of high performance water reducing agent and low viscosity type water reducing agent is a study of suitable range of use due to side effects. in this study, we aimed at reducing viscosity and yield value using high performance water reducing agent and low viscosity type water reducing agent, and this was evaluated using a rheometer. as a result of analysis of viscosity and yield value, it was found that the high performance water reducing agent has higher reduction effect than the low viscosity type water reducing agent. however, the larger the viscosity lowering effect is, the lower the usable range is, compared to general high performance water reducing agents, and it was found that sufficient consideration for this judgment of appropriate quantity is necessary.

  • PDF

Strength Properties of Cement Composite according to the Mixing Ratio of Amorphous Metallic Fiber (비정질금속섬유 혼입율에 따른 시멘트 경화체의 강도 특성)

  • Kim, Ji-Hwan;Rho, Young-Hwan;Lee, Jae-In;Bae, Sung-Ho;Oh, Tae-Gue;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.79-80
    • /
    • 2020
  • This study compared and analyzed the flow and strength characteristics of cement paste according to the rate of mixing of amorphous metallic fiber as part of the research for the development of amorphous metallic fiber reinforced cement composite.

  • PDF

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

In-vitro Tests of Topical Skin Protectants using a Flow-Through Diffusion Cell System Containing Excised Hairless Mouse Skin (생체 피부조직을 이용한 피부보호제 in-vitro 시험평가)

  • Lee, Eun Young;Choi, Hoo Kyun;Kim, Sang Woong;Seo, Dong Sung;Joe, Hae Eun;Yu, Chi Ho;Kim, Chang Hwan;Cho, Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.434-442
    • /
    • 2022
  • Highly toxic chemical warfare agents(CWA) could be used in chemical warfare and terrorism. The protection of skin is crucial for civilians and soldiers, because the primary routes of exposure to CWA are inhalation and skin absorption. Thus, topical skin protectants(TSP) have been studied and developed in many countries to complement protective equipments. In this study, in-vitro test procedure was optimized and established using a flow-through diffusion cell system containing excised hairless mouse skin in an attempt to assess the effectiveness of various TSP formulations against nerve agent simulants. In addition, the test results on the formulations including the ingredients used in SERPACWA(Skin Exposure Reduction Paste Against Chemical Warfare Agent) and IB-1(TSP of Israel) were included, indicating that the formulations with perfluorinated compounds were more effective than the glycerin-based formulations.

Rheological Evaluation of Blast Furnace Slag Cement Paster over Setting Time (고로슬래그 혼합 시멘트 페이스트의 응결시간 경과에 따른 레올로지 특성)

  • Cho, Bong-Suk;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.505-512
    • /
    • 2016
  • Even though high performance concrete was developed according to the trend of bigger and higher of reinforced concrete building, the rheological evaluations such as viscosity, yield stress are not enough to use as input data to accomplish the numerical analysis for the construction design. So there are many problems in the harden concrete such as poor compaction, rock pocket and crack, etc. in the field. In this study, consistency curves were measured by the viscometer as hydration reaction time passed. At the same time the slump flow test and Vicat setting test were carried out for comparing with the results of rheological properties. The fluidity of the W/B 30% decreased as the increase of replacement ratio of blast furnace slag. But in case of W/B 40%, the replacement ration did not significantly influenced to the slump flow value with the passage of hydration time. By the replacement of blast furnace slag to cement, initial setting was delayed and the time gap between initial and final setting became shorten. Through the regression analysis using Bingham model, there are a sudden changes of viscosity and yield stress around initial setting in case of low W/B 30%. The increase of workability by the change of free water in cement paste was offset by the coating effect of impermeable layer in case of W/B 40%.

Experimental Study on the Reological Properties of Carbon Nano Materials as Cement Composites (탄소계 나노소재를 적용한 시멘트 페이스트 복합체의 유변학적 특성에 대한 연구)

  • Kim, Won-Woo;Moon, Jae-Heum;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.227-234
    • /
    • 2022
  • In this study, the rheological properties of cement paste composites applied with carbon-based nano-materials were experimental analyzed. Flow table and rheological properties, compressive strength were measured in the cement paste using graphene oxide asqueous solution and carbon nanotube aqueous solution. When carbon nano-materials was mixed in an aqueous solution, flow decreased and plastic viscosity and shear stress were increased. In particular, graphene oxide rapidly increased the plastic viscosity and shear stress. In the case of carbon nanotube aqueous solution, when less than 0.2 % was mixed, the increase rate was low compared to graphene oxide. This is because the specific surface area of graphene, which is in the form of a plate, is large. The compressive strength showed a small amount in strength increase when graphene mix, and CNT had a strength about 112 % of OPC. Carbon-based nanomaterials, is considered that CNT are suitable more to be used construction materials. However, extra studies on the surfactant to be used for mixing proportion and dispersion will be needed.

Viability Assessment of Fresh and Frozen-thawed Dog Spermatozoa by Flow Cytometry (Flow Cytometry에 의한 개 신선정액과 동결정액의 생존성 분석)

  • Hong Y. M.;Kim Y. J.;Yu I.;Ji D. B.;Kim M. S.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.167-172
    • /
    • 2004
  • This study was performed to examine the correlations among dog sperm viabilities evaluated by flow cytometry, by microscopic evaluation (ME), by carbo-xifluorescein diacetate and propidium iodide (CFDA/PI) and by hypoosmotic swelling (HOS) test. Semen were collected from 5 dogs ranging in age from 2 to 4 years. Each ejaculate was divided into 3 aliquots and different proportions of freeze-killed cells were added to each aliquot (1:0, 1:1 and 1:3). In the other experiment, semen was extended with Sweden extender containing 5% glycerol and equex STM paste, and frozen using liquid nitrogen vapor. Fresh and frozen-thawed dog sperm viability were assessed by flow cytometry using PI staining method. The accuracy of flow cytometry was evaluated by comparing with other classic assessments, microscopic evaluation, epifluorescence microscopic analysis using CFDA/PI, and HOS test. High correlations of sperm viabilities were found among flow cytometry, epifluorescence evaluation, HOS test (p<0.01) in fresh semen. Especially, sperm viability assessed by HOS test was highly correlated with viability by flow cytometry in all the ratios of live and dead spermatozoa, 1:0, 1:1 and 1:3 (p<0.01). The viability evaluated by ME were significantly correlated with that by flow cytometry in ratios of 1:0 and 1:3 (p<0.05) however, there was no significance in ratio of 1:1. The viability evaluated by C/p were highly correlated with that by flow cytometry in ratio of 1:0 and 1:1 (p<0.01) and significantly correlated in ratio of 1:3 (p<0.05). In frozen-thawed spermatozoa, the viability determined by HOS test was considerably correlated with that by flow cytometry (p<0.01). There was significant correlation between the viabilities by ME and by flow cytometry (p<0.05). But the viability evaluated by CFDA/PI was not correlated with viability by flow cytometry. The result from this study validate the use of flow cytometry as a precise method for assessing the viability of fresh and frozen-thawed dog spermatozoa.