DOI QR코드

DOI QR Code

Experimental Study on the Reological Properties of Carbon Nano Materials as Cement Composites

탄소계 나노소재를 적용한 시멘트 페이스트 복합체의 유변학적 특성에 대한 연구

  • Kim, Won-Woo (Department of Structural Engineering Research, Korea institute of civil engineering and building technology) ;
  • Moon, Jae-Heum (Department of Structural Engineering Research, Korea institute of civil engineering and building technology) ;
  • Yang, Keun-Hyeok (Department of Architectural Engineering, Kyonggi University)
  • 김원우 (한국건설기술연구원 구조연구본부) ;
  • 문재흠 (한국건설기술연구원 구조연구본부) ;
  • 양근혁 (경기대학교 스마트시티공학부 건축공학전공)
  • Received : 2022.08.26
  • Accepted : 2022.09.13
  • Published : 2022.09.30

Abstract

In this study, the rheological properties of cement paste composites applied with carbon-based nano-materials were experimental analyzed. Flow table and rheological properties, compressive strength were measured in the cement paste using graphene oxide asqueous solution and carbon nanotube aqueous solution. When carbon nano-materials was mixed in an aqueous solution, flow decreased and plastic viscosity and shear stress were increased. In particular, graphene oxide rapidly increased the plastic viscosity and shear stress. In the case of carbon nanotube aqueous solution, when less than 0.2 % was mixed, the increase rate was low compared to graphene oxide. This is because the specific surface area of graphene, which is in the form of a plate, is large. The compressive strength showed a small amount in strength increase when graphene mix, and CNT had a strength about 112 % of OPC. Carbon-based nanomaterials, is considered that CNT are suitable more to be used construction materials. However, extra studies on the surfactant to be used for mixing proportion and dispersion will be needed.

본 연구에서는 탄소계 나노소재를 적용한 시멘트 페이스트 복합체의 유변학적 특성을 실험적으로 분석하였다. 탄소계 나노소재인 산화그래핀과 탄소나노튜브의 사용성을 고려하여 수용액 상태로 혼입한 굳기전 시멘트 페이스트에서 흐름성 및 레올로지를 측정하였다. 그리고 굳은 시멘트 페이스트 복합체는 만능재료 실험기를 활용하여 압축강도 측정을 검토하였다. 산화그래핀은 수용액 상태로 혼입하였을 때 혼입율 상승 시 흐름성이 감소하고 소성 점도와 전단응력이 급격하게 증가하였다. 탄소나노튜브 수용액도 동일한 경향성을 가졌으나 시멘트 중량대비 0.2 % 미만을 혼입한 경우 산화그래핀과 비교하여 상대적으로 증가율이 낮게 측정되었다. 이는 판상형 형태인 그래핀의 비표면적이 커서 시멘트 페이스트의 흐름성을 감소시키고 소성 점도와 전단응력을 상승시키는 것으로 판단된다. 탄소나노튜브 수용액은 0.2 %이상 혼입 시 소성점도가 일반배합 대비 2.16배 수준으로 급격히 상승하며 전단응력도 상대적으로 높게 측정되었다. 이는 탄소나노튜브의 혼입량이 과혼입 되면서 시멘트 페이스트 내에서 분산이 제대로 되지 않아 탄소나노튜브 간의 뭉침으로 인한 응집효과로 판단된다. 압축강도는 그래핀 혼입시 강도 상승율이 미미하였으며, CNT는 최대 약 12 %의 상승효과가 있음을 확인하였다. 따라서 탄소계나노소재 적용 시 상대적으로 CNT를 사용할 경우가 사용 가능성이 높을 것으로 판단되나 최대 혼입량 및 분산에 사용될 계면활성제에 대한 추가적인 연구가 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원(과제번호 22NANO-C156177-03)으로 수행되었습니다.

References

  1. American Society for Testing and Materials C 109. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), West Conshohocken: ASTM International.
  2. American Society for Testing and Materials C 305. (2020). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, West Conshohocken: ASTM International.
  3. Bakshi, S.R., Lahiri, D., Agarwal, A. (2013). Carbon nanotube reinforced metal matrix composites - a review, International Materials Reviews, 55(1), 41-64 https://doi.org/10.1179/095066009X12572530170543
  4. Chan, L.Y., Andrawes, B. (2010). Finite element analysis of carbon nanotube/cement composite with degraded bond strength, Computational Materials Science, 47(4), 994-1004 https://doi.org/10.1016/j.commatsci.2009.11.035
  5. Choi, Y.W., Choi, B.K., Park, M.S., Sung, D. (2014). A study on the rheology properties for development of sprayed high performance fiber reinforced cementitious composites for protection and blast resistant, Journal of the Korean Recycled Construction Resources Institute, 2(3), 188-195 [in Korean]. https://doi.org/10.14190/JRCR.2014.2.3.188
  6. Dilon, A.C., Jones, K.M., Bekkedhl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J. (1997). Stroage of hydrogen in single-walled carbon nanotubes, Nature, 386, 377-379 https://doi.org/10.1038/386377a0
  7. Jung, M.J., Lee, Y.S., Hong, S.G., Moon, J.H. (2020). Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE), Cement and Concrete Research, 131, 1-15
  8. Kang, M.H., Yeom, H.Y., Na, H.Y., Lee, S.J. (2013). Comparative study of physical dispersion method on properties of polystyrene/multi-walled carbon nanotube nanocomposites, Polymer(Korea), 37(4), 526-532
  9. Kim, J.H., Kim, W.W., Moon, J.H., Chung, C.W. (2020). Effect of multi-walled carbon nanotube on rheological behavior and compressive strength of cement paste, Journal of the Korean Recycled Construction Resources Institute, 8(4), 467-474 [in Korean]. https://doi.org/10.14190/JRCR.2020.8.4.467
  10. Kim, B.J., Kim, J.K., Song, K.I., Oh, M.H., Lee, B.Y. (2015). Experimental study on rheological properties of alkali activated slag paste with water to binder ratio, Journal of the Korea Concrete Institute, 27(5), 511-519 https://doi.org/10.4334/JKCI.2015.27.5.511
  11. Korean Standard L 5109. (2017). Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, Korean Standards Association.
  12. Korean Standard L 5111. (2017). Flow Table for Use in Tests of Hydraulic Cement, Korean Standards Association.
  13. Korean Standard L 5201. (2021). Portland Cement, Korean Standards Association.
  14. Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G. (2008). Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 3(2), 101-105 https://doi.org/10.1038/nnano.2007.451
  15. Li, H., Xiao, HG., Yuan, J., Ou, J. (2004). Microstructure of cement mortar with nano particles, Composites Part B: Engineering, 35(2), 185-189 https://doi.org/10.1016/S1359-8368(03)00052-0
  16. Li, L.J., Nicholas, R.J., Chen, C.Y., Darton, R.C., Baker, S.C. (2005). Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology, 16(5), S202 https://doi.org/10.1088/0957-4484/16/5/012
  17. Lim, M.J., Lee, H.K., Nam, I.W., Kim, H.K. (2017). Carbon nanotube/cement composites for crack monitoring of concrete structures, Composite Structures, 180, 741-750 https://doi.org/10.1016/j.compstruct.2017.08.042
  18. O'Connell, M.J., Boul, P., Ericson, L.M., Huffman, C., Wang, Y., Haroz, E., Kuperm, C., Tour, J., Ausman, K.D., Smalley, R.E. (2001). Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chemical Physics Letters, 342(3-4), 265-271 https://doi.org/10.1016/S0009-2614(01)00490-0
  19. Park, S.S., Park, Y.C., Kim, N.J. (2011). A comparative study on the characteristics of the MWCNTs and PVP added nanofluids, Korean Journal of Air-Conditioning and Refrigeration Engineering, 23(1), 47-53 [in Korean]. https://doi.org/10.6110/KJACR.2011.23.1.047
  20. Xu, S., Liu, J., Li, Q. (2015). Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, Construction and Building Materials, 76, 16-23 https://doi.org/10.1016/j.conbuildmat.2014.11.049
  21. Zoua, B., Chen, S.J., Korayem, A.H. Collins, F., Wang, C.M. Duan, W. H. (2015). Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes, Carbon, 85(1), 212-220 https://doi.org/10.1016/j.carbon.2014.12.094