• Title/Summary/Keyword: Passive safety

Search Result 399, Processing Time 0.033 seconds

CFD analysis of the effect of different PAR locations against hydrogen recombination rate

  • Lee, Khor Chong;Ryu, Myungrok;Park, Kweonha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • Many studies have been conducted on the performance of a passive autocatalytic recombiner (PAR), but not many have focused on the locations where the PAR is installed. During a severe accident in a nuclear reactor containment, a large amount of hydrogen gas can be produced and released into the containment, leading to hydrogen deflagration or a detonation. A PAR is a hydrogen mitigation method that is widely implemented in current and advanced light water reactors. Therefore, for this study, a PAR was installed at different locations in order to investigate the difference in hydrogen reduction rate. The results indicate that the hydrogen reduction rate of a PAR is proportional to the distance between the hydrogen induction location and the bottom wall.

The evaluation for the regional characteristics with the VOCs data measured by passive sampler (Passive sampler를 활용한 VOCs 측정자료의 지역별 농도 특성 평가)

  • 박민수;정의석;김선규;김선태
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.205-206
    • /
    • 2002
  • 인체의 유해성과 더불어 오존과의 반응성으로 관심의 대상이 되고 있는 대기 환경 중에 VOCs 물질은 최근 약 10여년간 대기 환경 관리에 주요 관심 대강이었으며, 앞으로도 지속적인 노력이 이루어 질 대상이다. 이러한 VOCs는 배출원 및 그 종의 다양성, 그리고 일반적으로 수십 ppb이하의 매우 낮은 농도로 대기 환경 중에 존재하고 있어 측정 및 관리에 어려운 물질이나, 분석기술의 발달과 측정과정에 다양한 방법들이 개발됨에 따라 다양한 종류의 결과들이 발표되고 있다. 특히 이러한 폭정 결과들을 착용하여 이미 MSDS(Material Safety Data Sheets)나 각종 inventory, Database의 구축이 진행되고 있다. (중략)

  • PDF

Micro-vibration Isolation Performance Verification for the Passive Vibration Isolator using SMA Mesh Washer (SMA 메쉬 와셔를 적용한 수동형 진동절연기의 미소진동 절연성능 검증)

  • Kwon, Sung-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.900-903
    • /
    • 2014
  • Fly-wheel, Gimbal antenna, CMG, Spaceborne cyrocooler generate micro-vibration during their on-orbit operation as well as implementing their own function. To comply with the mission requirement of high resolution observation satellite, additional technical efforts have been required to isolate the micro-vibration derived from such payloads by applying the vibration isolator. In this study, we proposed a passive isolator using SMA mesh washer, which guarantees the structural safety of both micro-vibration disturbance source and itself under harsh launch vibration loads without an additional holding mechanism and the micro-vibration isolation performance on orbit environment. To verify the micro-vibration isolation performance of the proposed vibration isolator, we performed the micro-vibration isolation measurement test using the dedicated micro-vibration measurement device proposed in this study.

  • PDF

Rehabilitation of hospital buildings using passive control systems

  • Syrmakezis, C.A.;Mavrouli, O.A.;Antonopoulos, A.K.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.305-312
    • /
    • 2006
  • In the case of hospital buildings, where seismic design requirements are very high, existing structuresand especially those attacked by past earthquakes, appear, often, unable to fulfil the necessary safety prerequisites. In this paper, the retrofitting of hospital buildings is investigated, using alternative methods of repair and strengthening. Analysis of an existing hospital building in Patras, Greece, is performed. The load-bearing system is a reinforced concrete system. Two solutions are proposed: strengthening using concrete jackets around column and beam elements and application of viscoelastic dampers for the increase of the stability of the structure. Adequate finite element models are constructed for each case and conclusions are drawn on the efficiency of each rehabilitation method.

An Assessment of the Secondary Neutron Dose in the Passive Scattering Proton Beam Facility of the National Cancer Center

  • Han, Sang-Eun;Cho, Gyuseong;Lee, Se Byeong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.801-809
    • /
    • 2017
  • The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a $^3He$ neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from $4.942{\pm}0.031mSv/Gy$ at the end of the field to $0.324{\pm}0.006mSv/Gy$ at 150 cm in axial distance.

A security implementation based on the sensor tag (센서 태그를 이용한 보안 장치 구현)

  • Kim, Sang-Choon;Park, Ji-Mann
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • This paper describes a passive SID sensor tag that provide physical security functions based on a sensor interface module. It elementarily consists of a serial I/O interface, control module, and sensor module. In this paper, it show tamper-proof security functions by comparison and encryption with the sensor signal data using the physical resistors. The passive SID sensor tag can be realized by the real time management for the safety, forgery, and so on. The proposed SID tag embedded with a sensor module is expected to find wide physical security applications.

Basic Design of ECU Hardware for the Functional Safety of In-Vehicle Network Communication (차량 내 네트워크 통신의 기능안전성을 위한 하드웨어 기본 설계)

  • Koag, Hyun Chul;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1373-1378
    • /
    • 2017
  • This paper presents a basic ECU(Electronic Control Unit) hardware development procedure for the functional safety of in-vehicle network systems. We consider complete hardware redundancy as a safety mechanism for in-vehicle communication network under the assumption of the wired network failure such as disconnection of a CAN bus. An ESC (Electronic Stability Control) system is selected as an item and the required ASIL(Automotive Safety Integrity Level) for this item is assigned by performing the HARA(Hazard Analysis and Risk Assessment). The basic hardware architecture of the ESC system is designed with a microcontroller, passive components, and communication transceivers. The required ASIL for ESC system is shown to be satisfied with the designed safety mechanism by calculation of hardware architecture metrics such as the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric).

A study on the Average Factor of Safety in Slope Stability Being Applied to Wedge theory (Wedge 이론을 적용한 사면안정해석의 평균 안전율에 관한 연구)

  • 김경진
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.1
    • /
    • pp.3-11
    • /
    • 1986
  • The analysis of Geotechnical stability problems by the limit equilibrium method involve assuming the shape of the failure and then investigating many surfaces of the shape to identify the one on which failure seems most likely to occur. These arbitrary assumptions most frequently concern to the locations or directions of side force on slice and the overall factor of safety is considered identical to the local factor of safety. In this paper, let the factor of safety of a slope at wedge block stage differently, when an upper part of the potential sliding mass has a simple active stress field and the lower part of the passive stress field and overall factor of safety is obtained by the average of local factor and computer program based on the modified wedge Method is proposed for this thesis. The new algorithm based on tile modified new method is made for estimating the safety factor of Earth Dam. Compared with conventional method for many cases tile average values of the factor of safety determined by the modified new method are very nearly the same. For all of the cases studied the difference was found 0.03. Finally this new method is thought to be very useful in slope stability analysis.

  • PDF

Introduction of Fire Protection Technology and Its Design Method of Offshore Facilities (해양플랜트의 방화대책 및 설계기술 소개)

  • Koo, Myeong Jun;Choi, Jae Woong;Yoon, Ho Byung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The dimensioning accidental loads have been selected through suitable quantitative risk assessment and generally utilized important factors for offshore facility design. The fire hazard can be quantified with dimensioning fire loads. The main purposes of fire protection are to maintain the functionality of safety systems within evacuation period and to prevent the escalation from initial fire to uncontrolled catastrophic fire. This paper introduces the applications and the design methods of active and passive fire protections as representative measures of fire protection of offshore facilities. The passive fire protection requires the high initial installation cost and much difficulty on the operation of facilities and their maintenance. The oil major clients have asked the design contractors of offshore facilities to optimize the amount of passive fire protection with relevant engineering technology recently.

Magneto-rheological and passive damper combinations for seismic mitigation of building structures

  • Karunaratne, Nivithigala P.K.V.;Thambiratnam, David P.;Perera, Nimal J.
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1001-1025
    • /
    • 2016
  • Building structures generally have inherent low damping capability and hence are vulnerable to seismic excitations. Control devices therefore play a useful role in providing safety to building structures subject to seismic events. In recent years semi-active dampers have gained considerable attention as structural control devices in the building construction industry. Magneto-rheological (MR) damper, a type of semi-active damper has proven to be effective in seismic mitigation of building structures. MR dampers contain a controllable MR fluid whose rheological properties vary rapidly with the applied magnetic field. Although some research has been carried out on the use of MR dampers in building structures, optimal design of MR damper and combined use of MR and passive dampers for real scale buildings has hardly been investigated. This paper investigates the use of MR dampers and incorporating MR-passive damper combinations in building structures in order to achieve acceptable levels of seismic performance. In order to do so, it first develops the MR damper model by integrating control algorithms commonly used in MR damper modelling. The developed MR damper is then integrated in to the seismically excited structure as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Analyses are conducted to investigate the influence of location and number of devices on the seismic performance of the building structure. The findings of this paper provide information towards the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.