• 제목/요약/키워드: Passing Wake

검색결과 45건 처리시간 0.024초

주기적 통과 후류의 방향과 주파수가 익형 위 비정상 천이경계층에 미치는 영향 (Effects of Wake-Passing Orientation and Frequency on Unsteady Boundary Layer Transition on an Airfoil)

  • 강신형;박태춘;전우평
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.685-694
    • /
    • 2002
  • Effects of wake-passing orientation and frequency on the wake-induced boundary layer transition on a NACA0012 airfoil are investigated. The wakes are generated by rotating cylinders clockwise (CW) and counterclockwise (CCW) around the airfoil. Time- and phase-averaged streamwise mean velocities and turbulent fluctuations are measured with a single hot-wire probe. Wall skin frictions are estimated by the Computational Preston Tube Method (CPM). The pressure distribution on the airfoil is different according to the wake-passing orientation and frequency. Turbulent patches are generated in the laminar boundary layer due to the passing wake and the boundary layer becomes temporarily transitional. The transition process is significantly affected by the pressure gradient and the turbulent patches. For the receding wake, the turbulent patches propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. As the frequency increases, onset location of transition moles upstream and the boundary layer near the trailing edge becomes more transitional.

주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1) (Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I))

  • 국건;이준식;고상근
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이 (Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence)

  • 박태춘;전우평;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF

주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(I) -시간평균된 유동 특성- (Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (I) -A Time-Averaged Characteristic-)

  • 박태춘;전우평;강신형
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.776-785
    • /
    • 2001
  • Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2$\times$10(sup)5 and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase-and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer.

정익에서 발생한 비정상 후류를 지나는 터빈 동익 유동장 수치해석 (Numerical Analysis of the Turbine Rotor Flow with the Unsteady Passing Wake from a Stator)

  • 이은석
    • 한국항공우주학회지
    • /
    • 제35권4호
    • /
    • pp.275-280
    • /
    • 2007
  • 터빈스테이지는 정익과 동익으로 구성되어 있다. 정익은 동익이 필요한 축 파워를 내도록 입구조건을 만들어준다. 정익 끝단에서 발생된 후류는 동익과 간섭을 일으킨다. 본 연구에서는 이러한 정익 동익간의 간섭현상을 고찰하였다. 정익과 동익의 간격이 큰 경우, 유동해석은 독립적으로 수행 될 수 있다. 정익 주위의 유동을 해석한 후, 발생되는 후류특성을 계산하여 동익의 유동해석에 포함시키었다. 정익에서 발생된 후류는 동익에 접근함에 따라 구부러지고 절단되며 흐름방향으로 연장되는 특성을 가지고 있다. 또한 정익과 동익 간격 영향을 고찰하였으며 그 간격이 가까울수록 후류의 압력 피크로 인한 압력 및 양력손실이 커짐을 알 수 있다.

가스터빈 회전익 채널내 2차원 비정상 유동 및 열전달 특성에 관한 연구 (A Study on the 2-D Unsteady Flow and Heat Transfer on Turbine Rotor Passage)

  • 구경하;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.428-433
    • /
    • 2000
  • The characteristics of unsteady heat transfer and boundary layer flow in the SSME turbine rotor passage are investigated with LRN $k-{\varepsilon}$ turbulence model. The unsteady flow and heat transfer in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid/boundary-layer flow approach. The relevant governing equations are discretized to a system of finite different equations by means of a BTBCS implicit method. These equations have been solved numerically, for the velocity and temperature fields using TDMA method. Heat flux on the blade surface and flow parameters in the rotor passage are calculated with wake interaction. Numerical results show that velocity, pressure, turbulent kinetic energy and heat flux on the blade surface are varied periodically by wake passing.

  • PDF

주기적 후류 내의 익형 위 천이경계층에 관한 실험적 연구(II) -위상평균된 유동특성- (Experimental Study of Boundary Layer Transition on an Airfoil Induced by Periodically Passing Wake (II) -A Phase-Averaged Characteristic-)

  • 박태춘;전우평;강신형
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.786-798
    • /
    • 2001
  • This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further down stream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall.

비정상 후류를 지나는 터빈 동익 주위의 유동장 수치해석 (Numerical Analysis of a Turbine Rotor Cascade with Unsteady Passing Wakes)

  • 이은석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2006
  • A turbine stage consists of a stator and rotor. A stator provides the required inlet flow conditions so that a rotor can produce the necessary power. Passing wakes generated at the trailing edge of a stator make an interaction with a rotor. In the present study, this interaction flow mechanism is investigated using the numerical analysis. In case of the large gap distance between the stator and rotor, the stator and rotor flow analysis can be separated. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake information from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor leading edge. And it is chopped when it strikes the rotor body. After that, the chopped wakes becomes the prolongation as it goes downstream. Also, the aerodynamic characteristics with the variation of the gap distance between a stator and rotor was investigated. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance. This unsteady effect proves to be directly related to the fatigue and noise in turbomachinery and this study would be helpful to investigate such fields.

  • PDF

회피 기동에 강인한 수상 항적 탐색 방법 (Robust Ship Wake Search Method in the Target Evasion Environment)

  • 구본화;이영현;박정민;정석문;홍우영;김우식;임묘택;고한석
    • 한국군사과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.8-17
    • /
    • 2009
  • This paper proposes robust ship wake search method in the target evasion environment. Moving surface ships generate a long trailing wake in the rear of a surface ship. Wake homing torpedo sensing this wake can detect the surface target and engage it automatically. In wake homing torpedo, wake search method is important element to maximize effectiveness of wake homing torpedo. This paper proposes one-side, two-side and centering mode according to passing wake boundary scenarios. Also, wake deflection angle is deduced by using the principle of deflection angle of acoustic torpedo. The representative experimental results using monte-carlo simulation demonstrate that the searching method using one-side mode is superior to two-side and centering mode in the target evasion environment.

회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구 (Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing)

  • 김윤제;전용렬
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF