• 제목/요약/키워드: Parts-based Feature Extraction

검색결과 60건 처리시간 0.02초

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

영어 트위터 감성 분석을 위한 SentiWordNet 활용 기법 비교 (A Comparative Study on Using SentiWordNet for English Twitter Sentiment Analysis)

  • 강인수
    • 한국지능시스템학회논문지
    • /
    • 제23권4호
    • /
    • pp.317-324
    • /
    • 2013
  • 트위터 감성 분석은 트윗글의 감성을 긍정과 부정으로 분류하는 작업이다. 이 연구에서는 SentiWordNet(SWN) 감성 사전에 기반한 트윗글 감성 분석을 다룬다. SWN은 전체 영어 단어에 대해 단어의 의미별로 긍정, 부정의 감성 강도를 저장해 둔 감성 사전이다. 기존 SWN 기반 감성 분석 연구들은 문서에 출현하는 각 용어의 감성을 SWN으로부터 결정한 다음 이를 바탕으로 문서 전체의 감성을 결정하였는데, 그 방법들이 매우 다양하다. 예를 들어, 한 용어의 감성 결정 시 해당 용어의 SWN 내 의미별 긍정, 부정 감성 강도 차이들의 평균을 계산하거나 긍정과 부정 각각의 감성 강도 평균 혹은 최대값을 구하기도 하며, 문서 전체의 감성을 결정하는 경우에도 문서 내 용어들의 감성 값들에 대해 평균 혹은 최대값을 취하기도 하였다. 또한 SWN 내 형용사, 동사, 명사, 부사의 품사 집합 전체 혹은 특정 부분집합에 대해 위의 감성 결정 작업을 적용하기도 한다. 이처럼 기존 연구에서는 SWN 기반의 다양한 감성 자질 추출 절차가 시도되고 있으나 이들 자질 추출 기법 전반에 대한 성능 비교 연구는 찾기 힘들다. 이 연구에서는 SWN을 트위터 감성 분석에 활용하는 다양한 방법들을 일반화하는 절차들을 소개하고 각 방법들의 성능 비교 및 분석 결과를 제시한다.

음악의 클라이맥스 추출을 이용한 내용 기반 장르 분류 (Content-Based Genre Classification Using Climax Extraction in Music)

  • 고일주;정명범
    • 한국멀티미디어학회논문지
    • /
    • 제10권7호
    • /
    • pp.817-826
    • /
    • 2007
  • 기존의 음악 분류 연구는 음악에서 임의 20초 구간 또는 $40%{\sim}45%$ 지난 부분으로부터 20초 구간을 얻은 후 여러 가지 신호적 특징을 추출하여 장르 분류에 사용해왔다. 본 논문에서는 기존 연구의 성공률을 높이기 위해 음악의 클라이맥스 구간을 추출하여 장르 분류하는 것을 제안한다. 음악은 도입과 진행, 클라이맥스 부분으로 나뉘며, 클라이맥스는 음악이 강조하는 부분으로서 그 음악의 특징을 가장 잘 나타낸다. 즉, 음악을 분석하거나, 분류할 때 클라이맥스 부분을 이용하면 보다 효과적인 결과를 얻을 것이다. 음악의 클라이맥스는 FFT를 이용하여 박자와 마디 정보를 얻은 후 마디별 파형 집중도로부터 추출할 수 있다. 논문에서는 기존의 연구에 사용된 방법과 제안한 방법인 클라이맥스를 이용하여 장르 분류 실험을 하였다. 기존 방법은 47%의 성공률을 보이는 반면 제안한 방법은 55% 향상된 성공률을 얻을 수 있었다.

  • PDF

드론과 이미지 분석기법을 활용한 구조물 외관점검 기술 연구 (Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques)

  • 김종우;정영우;임홍철
    • 한국건축시공학회지
    • /
    • 제17권6호
    • /
    • pp.545-557
    • /
    • 2017
  • 이 연구는 사회 기반 구조물의 노후화에 대한 안전점검 기술분야에서 구조물 외관점검 기술의 효율적 대안에 관한 연구이다. 기존 육안점검 및 조사를 대신하여 산업용 드론과 딥 러닝기반의 이미지 분석 기법을 접목함으로써 막대한 인력과 시간소요 및 비용을 절감하고 높은 구역 및 돔 구조물의 접근 한계를 극복하고자 하였다. 구조물의 0.3mm 이상의 균열 손상을 검지할 수 있는 고 해상도 카메라와 라이다 센서, 임베디드 이미지 프로세서 모듈로 구성된 탑재체를 제작하여 산업용 드론에 탑재하였다. 이를 현장 시험에 적용하여 자동비행항법을 통해 시편의 손상 이미지를 촬영하였다. 또한 균열경을 이용하여 기존 육안 점검 방법으로 백태, 박리박락과 같은 면적형 손상과 선형 손상인 균열의 폭과 길이를 측정하여 최종 이미지 분석 검출 결과와 비교하고자 하였다. 촬영된 이미지 중 80장의 샘플을 골라 이미지 분석 기법을 적용하여 사전처리작업(pre-processing)-분리작업(segmentation)-특징점 추출작업(feature extraction)-분류 작업(Classification)-지도학습작업(supervised learning) 등의 과정을 거쳐 손상을 분리하고, 이를 딥러닝 기반 플랫폼으로 지도학습하여 분석 파라미터를 추출하였다. 지도학습을 수행하지 않은 임의의 이미지 샘플 60장을 신규로 추가하여 추출된 파라미터를 기반으로 이미지 분석을 수행한 결과, 손상 검출율의 90.5%로 나타났다.

Sex determination from lateral cephalometric radiographs using an automated deep learning convolutional neural network

  • Khazaei, Maryam;Mollabashi, Vahid;Khotanlou, Hassan;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • 제52권3호
    • /
    • pp.239-244
    • /
    • 2022
  • Purpose: Despite the proliferation of numerous morphometric and anthropometric methods for sex identification based on linear, angular, and regional measurements of various parts of the body, these methods are subject to error due to the observer's knowledge and expertise. This study aimed to explore the possibility of automated sex determination using convolutional neural networks(CNNs) based on lateral cephalometric radiographs. Materials and Methods: Lateral cephalometric radiographs of 1,476 Iranian subjects (794 women and 682 men) from 18 to 49 years of age were included. Lateral cephalometric radiographs were considered as a network input and output layer including 2 classes(male and female). Eighty percent of the data was used as a training set and the rest as a test set. Hyperparameter tuning of each network was done after preprocessing and data augmentation steps. The predictive performance of different architectures (DenseNet, ResNet, and VGG) was evaluated based on their accuracy in test sets. Results: The CNN based on the DenseNet121 architecture, with an overall accuracy of 90%, had the best predictive power in sex determination. The prediction accuracy of this model was almost equal for men and women. Furthermore, with all architectures, the use of transfer learning improved predictive performance. Conclusion: The results confirmed that a CNN could predict a person's sex with high accuracy. This prediction was independent of human bias because feature extraction was done automatically. However, for more accurate sex determination on a wider scale, further studies with larger sample sizes are desirable.

음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구 (A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command)

  • 조상영;김민성;양준석;구영목;정양근;한성현
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model

  • Liu, Yan;Lv, Bingxue;Wang, Jingwen;Huang, Wei;Qiu, Tiantian;Chen, Yunzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1814-1828
    • /
    • 2021
  • Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.

교육용 어학 영상의 내용 기반 특징 분석에 의한 샷 구분 및 색인에 대한 연구 (A Study on Shot Segmentation and Indexing of Language Education Videos by Content-based Visual Feature Analysis)

  • 한희준
    • 정보관리학회지
    • /
    • 제34권1호
    • /
    • pp.219-239
    • /
    • 2017
  • IT기술이 급속히 발달하고 스마트 기기의 개인보급이 늘어나면서 정보의 전달 매체로 시청각 자료 중에서도 특히 영상 자료가 많이 활용된다. 문헌정보서비스 콘텐츠로서 영상자료는 필수 요소가 되었으며, TV를 통한 단방향 전달, 인터넷을 통한 양방향 서비스, 도서관 시청각 자료 대출 등 다양한 방법으로 활용되고 있다. 특히 인터넷 환경에서 스마트 기기를 통한 영상서비스 관점에서 정보 제공자는 제공 정보에 대한 가공에 적은 노력과 비용을 들이고자 하고, 또한 사용자는 과도한 데이터 사용량에 대한 부담과 시간, 공간적인 제약으로 인해 원하는 부분만을 효율적으로 이용하고자 한다. 따라서 영상에 대한 내용을 유사한 부분끼리 자동으로 구분하고 요약, 색인하여 이용 편의성을 높일 필요가 있다. 본 논문에서는 교육용 어학 영상의 내용과 그 특성을 분석하여 영상을 이루는 샷을 자동으로 구분하고 비주얼 특징을 조합하여 어학 영상의 세분화된 내용 정보를 결정하고 색인하는 방법을 제안한다. 외국어 강의 영상을 이용한 실험에 의해 의미기반의 샷 결정에 높은 정확률을 보였으며, 교육용 어학 영상의 요약 서비스에 효율적으로 적용 가능함을 확인하였다.

EMD와 FFT를 이용한 동작 상상 EEG 분류 기법 (Motor Imagery EEG Classification Method using EMD and FFT)

  • 이다빛;이희재;이상국
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1050-1057
    • /
    • 2014
  • 뇌전도 기반의 뇌-컴퓨터 인터페이스는 향후 손 또는 발과 같은 신체를 대체하거나 사용자의 편의성을 제고하는 등의 다양한 목적으로 여러 산업에서 사용이 될 수 있는 기술이다. 본 논문에서는 경험 모드 분해와 고속푸리에 변환을 통해 동작 상상 뇌전도 신호를 분해하고 특징을 추출하는 방법을 제안한다. 뇌전도 신호 분류 과정은 다음과 같이 3단계로 구성된다. 신호 분해에서는 경험모드분해를 이용하여 뇌전도 신호에 대한 내재모드함수를 생성한다. 특징 추출에서는 파워 스펙트럼 밀도를 이용하여 생성된 내재모드함수의 주파수 대역을 확인한 뒤, 뮤파 대역을 포함하고 있는 내재모드함수에 고속푸리에 변환을 적용하여 움직임 상상에 대한 특징을 추출한다. 특징 분류에서는 서포트 벡터 머신을 사용하여 동작 상상 뇌전도 신호에 대한 특징을 분류하고, 10-교차검증을 통해 분류기의 일반화 성능을 추정한다. 제안하는 방법은 다른 방법들과 비교하여 84.50%의 분류 정확도를 보여주었다.

필터 및 특징 선택 기반의 적응형 얼굴 인식 방법 (An Adaptive Method For Face Recognition Based Filters and Selection of Features)

  • 조병모;김기한;이필규
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 2D 영상 이미지를 인식하는데 있어서, 테스트 이미지를 입력 받는 카메라의 설치 공간 및 설정 상황에 따라 밝기, 명암, 빛의 방향 등과 같은 인식의 성능에 영향을 끼칠 수 있는 요소들이 매우 많이 존재한다. 본 논문은 카메라가 위치한 환경 상의 최소의 샘플 이미지를 가지고, 그 환경에서 입력되는 영상의 인식 성공률을 높일 수 있는 적응형 얼굴 인식 방법을 제안하고 있다. 제안한 적응형 얼굴 인식은 두 개의 부분으로 구성되어 있는데, 하나는 환경 적응을 하기 위한 부분이고, 다른 하나는 얼굴 인식을 수행하는 부분이다. 전자인 환경 적응 모듈에서는 안정 상태 유전 알고리즘을 사용하여 인식기가 최적의 성능을 낼 수 있는 필터 조합과 필터 파라메터와 특징 벡터 집합 차원을 결정하고, 후자인 얼굴 인식 모듈에서는 그 결과를 사용하여 얼굴 인식 결과를 확인한다. 얼굴 인식 과정에서 이미지 사이의 유사도를 측정하기 위해서 가보 웨이블릿을 사용하였고, 인식의 결과를 도출하는 과정에서는 k-Nearest Neighbor을 사용하였다. 적응형 얼굴 인식 방법을 테스트 하기위해, 사인 함수의 가중치를 사용한 명암 노이즈, 임펄스 노이즈, 복합 노이즈에 관하여 각각 실험을 하였고, 진화 후에는 일반적으로 발생할 수 있는 노이즈에 대한 급격한 인식률 저하를 방지할 수 있음을 확인하였다.