• Title/Summary/Keyword: Particulate organic carbon

Search Result 206, Processing Time 0.027 seconds

Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan

  • Shimadera, Hikari;Hayami, Hiroshi;Chatani, Satoru;Morikawa, Tazuko;Morino, Yu;Mori, Yasuaki;Yamaji, Kazuyo;Nakatsuka, Seiji;Ohara, Toshimasa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.139-152
    • /
    • 2018
  • The urban model inter-comparison study (UMICS) was conducted in order to improve the performance of air quality models (AQMs) for simulating fine particulate matter ($PM_{2.5}$) in the Greater Tokyo Area of Japan. UMICS consists of three phases: the first phase focusing on elemental carbon (UMICS1), the second phase focusing on sulfate, nitrate and ammonium (UMICS2), and the third phase focusing on organic aerosol (OA) (UMICS 3). In UMICS2/3, all the participating AQMs were the Community Multiscale Air Quality modeling system (CMAQ) with different configurations, and they similarly overestimated $PM_{2.5}$ nitrate concentration and underestimated $PM_{2.5}$ OA concentration. Various sensitivity analyses on CMAQ configurations, emissions and boundary concentrations, and meteorological fields were conducted in order to seek pathways for improvement of $PM_{2.5}$ simulation. The sensitivity analyses revealed that $PM_{2.5}$ nitrate concentration was highly sensitive to emissions of ammonia ($NH_3$) and dry deposition of nitric acid ($HNO_3$) and $NH_3$, and $PM_{2.5}$ OA concentration was highly sensitive to emissions of condensable organic compounds (COC). It was found that $PM_{2.5}$ simulation was substantially improved by using modified monthly profile of $NH_3$ emissions, larger dry deposition velocities of $HNO_3$ and $NH_3$, and additionally estimated COC emissions. Moreover, variability in $PM_{2.5}$ simulation was estimated from the results of all the sensitivity analyses. The variabilities on CMAQ configurations, chemical inputs (emissions and boundary concentrations), and meteorological fields were 6.1-6.5, 9.7-10.9, and 10.3-12.3%, respectively.

Seasonal Distribution, Egg Production and Feeding by the Marine Copepod Calanus sinicus in Asan Bay, Korea

  • Park, Chul
    • Journal of the korean society of oceanography
    • /
    • v.32 no.2
    • /
    • pp.85-92
    • /
    • 1997
  • Seasonality in abundance and egg production was investigated for Calanus sinicus in Asan Bay, Korea, and feeding effort was measured in the laboratory condition. Although abundances of this species in this bay showed only one Peak in spring, egg Production showed two peaks, spring and fall, in this bay. Potential of year-round egg Production was also found. Food availability judged by the particulate organic carbon (POC) concentration was usually more than enough in this bay. High egg Production in fall resulted in spring Peak in abundance. But high egg Production in spring did not result in summer or fall Peak in abundance. Low abundances in summer and fall were believed to be the result of long range horizontal migration out to the central Part of the Yellow Sea. The highest average egg Production by the Population of this species was 16.3 eggs female-'day-'. Maximum e99 Production by an individual was 39.0 e99s female$^{-1}$ day$^{-1}$, which yielded 30.7% of specific egg Production rate in terms of body carbon content with the carbon contents of 44.44$^{\mu}$gC and 0.35 $^{\mu}$gC for individual adult female and egg, respectively. Clearance rate (F) measured in the laboratory condition decreased exponentially with the increase of food concentrations, as expected. The asymptote of F was 3.17 ml copepod$^{-1}$ h$^{-1}$. When this value and the minimum concentration of POC measured in the field were applied under the assumption of continuous feeding in the nature, the calculated gross efficient of egg production was 41.6% in case of average egg production of the population. Violation of the assumption of diurnal feeding rhythm and application of the minimum concentration of POC may offset the influence on calculation each other.

  • PDF

Vertical Variation of the Particle Flux in the Eastern Tropical Pacific from 2009 to 2010 (동태평양 열대해역에서 2009-2010년 침강입자 플럭스의 수직 변화)

  • Kim, Hyung Jeek;Cho, Sosul;Kim, Dongseon;Kim, Kyeong Hong;Yoo, Chan Min
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.221-233
    • /
    • 2022
  • A sediment trap had been deployed at 1250 m depth in the Eastern Tropical Pacific (ETP) from September 2009 to July 2010, with the aim of understanding the temporal and vertical variability of particle flux. During the monitoring period, total particle flux varied from 12.4 to 101.0 mg m-2day-1, with the higher fluxes in January-March 2010. Biogenic particle flux varied in phase with the total particle flux. The increase in total particle flux during January-March 2010 was attributed to the enhanced biological production in the surface layer caused by wind-driven mixing in response to the seasonal shifts in the location of the Intertropical convergence zone. The export ratio (e-ratio) was estimated using the particulate organic carbon flux and satellite-derived net primary production data. The estimated e-ratios changed between 0.8% and 2.8% (1.4±0.6% on average). The ratio recorded in the negative phase of Pacific decadal oscillation (PDO) was similar to the previous results obtained from the ETP during the 1992/93 periods in the positive phase of PDO. This suggests that the regime shift of the PDO is not related to the carbon export ratio.

Design of multi-sensor system for comprehensive indoor air quality monitoring

  • TaeHeon Kim;SungYeup Kim;Yoosin Kim;Min Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.149-158
    • /
    • 2024
  • This study aims to design and develop AirDeep-Room, a multi-sensor system for monitoring air quality in various indoor environments. The system measures CO2, TVOC, particulate matter, temperature, and humidity in real-time. By integrating multiple sensors, AirDeep-Room allows convenient correlation analysis using low data format in real-time. The sensor system was installed in a server room and a classroom. Data analysis showed a negative correlation of -0.24 between temperature and humidity in the server room, and a positive correlation of 0.43 in the classroom, indicating different interactions. A high correlation (r=0.69) between the number of students and concentrations of CO2 and TVOC demonstrated the significant impact of occupancy on air quality. AirDeep-Room effectively manages air quality across various environments and provides essential data for improving air quality in densely populated areas.

Spatio-temporal Distributions of Organic Matter in Surface Sediment in the Central Part of the South Sea, Korea (남해 중부해역 표층퇴적물 유기물의 시.공간 분포특성)

  • Noh, Il-Hyeon;Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Kim, Dae-Il
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.203-215
    • /
    • 2006
  • Field observations on the spatio-temporal distribution of organic matter of the surface sediment were carried out at 15 stations in the central parts of the South Sea of Korea from April 2002 to January 2003. The range of water temperature and salinity in bottom waters, mud content and water content of surface sediment were $8.06{\sim}23.35^{\circ}C,\;29.20{\sim}34.51\;psu,\;71.2{\sim}99.9%$ and $38.7{\sim}68.9%$, respectively. Measured parameters on the surface sediments of ignition loss (IL), chemical oxygen demand (CODs), phaeopigment, particulate organic carbon (POC) and particulate organic nitrogen (PON) also ranged in $3.9{\sim}l2.5%,\;9.60{\sim}44.05\;mgO_2/g-dry,\;1.58{\sim}29.51\;{\mu}g/g-dry,\;3.12{\sim}13.01\;mgC/g-dry$ and $0.49{\sim}2.00\;mgN/g-dry$, respectively. The spatio-temporal distribution of organic matter demonstrated higher concentrations offshore than at lesions near the coastal line. Higher concentrations occurred in the summer and spring. The results indicated that the origin of organic matter in surface sediments in the central part of the South Sea was autochthonous rather than allocthonous because the organic matter had an average C/N ratio of 6.44 (${\pm}0.51$). However, the composition of autochthonous organic matter was mainly derived from detritus rather than living phytoplankton, which was Indicated by the results of the POC/phaeopigment ratio. A principal component analysis (PCA) indicated that 73.2% of the variability in the data was described by two factors: 1) an 'environmental factor concerning the accumulation of materials (57.3%)' and 2) 'origin of organic matter and the composition by primary production (15.9%)'. The sedimentary environment in the central part of the South Sea was divided into four regions from the factor score of the PCA by the concentrations of organic matter and the composition ratio of organic matters from phytoplankton in surface sediments.

  • PDF

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF

Evaluating the Applicability of Activated Carbon-added Fiberboard Filters Fabricated with Lignocellulosic Fiber for the Reduction Equipment of Particulate Matter (리그노셀룰로오스 섬유 기반 활성탄-첨가 섬유판 필터의 미세먼지 저감장치용 적용가능성 평가)

  • Yang, In;So, Jae min;Hwang, Jeong Woo;Choi, Joon weon;Lee, Young-kyu;Choi, Wonsil;Oh, Seung Won;Moon, Myoung cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.548-556
    • /
    • 2021
  • This study was conducted to investigate the applicability of lignocellulosic fiber and coconut shell activated carbon (CSA) for the production of a particulate matter (PM)-reducing air-filter as raw materials to solve the environmental problems of non-woven fabrics. CSA had a good potential to use as a raw material of air-filter for reducing volatile organic compounds as well as noxious metals, and reduction capability of the CSA was 5 times higher than that of wood fiber. Natural adhesives formulated with proteinaceous wastes mostly were applied successfully to fabricate air-filters with the shape of fiberboard. The air-filter fabricated with the minimum target density of 200 kg/m3 and the maximum CSA-content of 40 wt% in fiberboard had a good manageable strength. However, the fiberboard filters was required to make vent-holes for improving an air-permeability of the filters. Size of the CSA particles was adjusted to greater than 2 mesh with the consideration of strength and formability of the fiberboard. Three-layers fiberboard that only wood fiber and the mixture of wood fiber and CSA were formed in the surface and middle layers, respectively, was determined to the optimal condition for the production of air-filters. In addition, traditional Korean paper handmade from mulberry trees (TKP) showed a good PM-reducing property as an air-filter. It is concluded that air-filtering set composed of fiberboard with vent-holes and TKP instead of conventional air-filters made with non-woven fabrics can be used as a filter for reducing the concentrations of PM, VOC and noxious metals existed in indoor and outdoor spaces.

Levels and Patterns of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Sediments from Korean Coast

  • Moon Hyo-Bang;Choi Hee-Gu;Kim Sang-Soo;Jeong Seung-Ryul;Lee Pil-Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-57
    • /
    • 2001
  • Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were measured in sediment samples from 19 stations in the coastal areas of Korea from February to July 2000. PCDDs and PCDFs were detected in all sediment samples. The concentrations of these con­taminants ranged from 18.2 to 804.0 pg/g dry weight and I-TEQ concentrations varied from 0.1 to 5.5 pg/g dry weight. Examination of homologue groups showed that octachlorinated dibenzo-p-dioxin (OCDD) was predominant congener in Korean coast. This pattern was similar to homologue profiles of marine sediments in which the main source of PCDDs/DFs was derived from the atmospheric deposition of particulate matters generated from various industrial activities. Grain size and total organic carbon (TOC) distribution are one of the important factors governing PCDDs/DFs concentration in this study.

  • PDF

Emission Characteristics of Odor Compounds in a Charcoal Production Kiln (숯가마 배가스 중 악취물질의 배출특성)

  • Park, Seong-Kyu;Choi, Sang-Jin;Hwang, Ui-Hyun;Lee, Jeong-Joo;Kim, Daekuen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Exhaust gas emitted as a result of the incomplete combustion of biomass in charcoal kilns includes odor compounds as well as other air pollutants such as particulate matters, sulfur and nitrogen oxides, and carbon monoxide. A number of offensive odor compounds affect quality of life. In this study, odor emissions were investigated from biomass burning in a pilot-scale charcoal kiln and a commercial-scale kiln. Complex odor from emission source reached up to 10,000 dilutions to threshold during the study period. Combustion fume was found to contain reduced sulfur compounds, aldehydes, and volatile organic compounds. Hydrogen sulfide and methyl mercaptan were the major odorants which highly contributed to the offensive odor.

Increase of diesel car raises health risk in spite of recent development in engine technology

  • Leem, Jong Han;Jang, Young-Kee
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.9.1-9.3
    • /
    • 2014
  • Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to $0.25{\mu}m$. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.