• Title/Summary/Keyword: Particle-phase PAH

Search Result 9, Processing Time 0.023 seconds

Characteristics of Gas- and Particle-phase Polycyclic Aromatic Hydrocarbon (PAH) Distribution in Tunnels (터널 내 기체 및 입자상 다환방향족탄화수소(PAH) 분포 특성)

  • Lee, Ji Yi;Lee, Seung-Bok;Kim, Jin Young;Jin, Hyoun Cher;Lim, Hyung Bae;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.519-530
    • /
    • 2014
  • Twenty four individual polycyclic aromatic hydrocarbon (PAH) compounds both in gas- and particle-phase were quantified in three tunnels (Namsan Tunnel 3, Jeongneung Tunnel, Bukak Tunnel) to characterize vehiculate emission of PAHs. Gas phase PAHs were dominant in tunnels which consisted of 85% of total PAHs concentrations. Naphthalene and 2-methyl naphthalene were the most abundant gas phase PAH compounds, while the concentrations of fluoranthene and pyrene were highest in the particle phase. Most (96%) of the gas phase PAH compounds consisted of two- and three-aromatic rings whereas most of the particle phase PAHs were in four and five-rings (67%) in tunnels. Average BaP-eq concentrations of PAHs in the particle phase ($20.8{\pm}11.6ngm^{-3}$) was about twenty fold higher than that in the gas phase ($1.6{\pm}0.6ngm^{-3}$). It means that the particle phase PAHs has more adverse health effect than the gas phase PAHs even though the concentrations of the particle phase PAHs were lower than those of the gas phase PAHs. Compared to previous studies reporting diagnostic ratios for specific PAH compounds, the profile of individual PAH compounds measured in this study reflected well for the vehiculate emissions. We reported, for the first time, on the results of the profile of individual PAH compounds measured in tunnels for both gas and particle phases.

Effect of Ambient Temperature on the Distribution of Atmospheric Concentrations of Polycyclic Aromatic Hydrocarbons in the Vapor and Particulate Phases (대기 중 다환방향족탄화수소의 기체-입자상 농도분포에 미치는 주변 온도의 영향)

  • 백성옥;최진수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.117-132
    • /
    • 1998
  • The main purposes of this study are to investigate the distributional characteristics of polycyclic aromatic hydrocarbons (PAH) in the vapor and particulate phases in the ambient atmosphere, and to evaluate the effect of ambient temperature on the vapor-particle partitioning during the sampling period. A total of 64 samples were collected during a period of 1995 to 1996, using a medium-volume sampler with XAD-2 adsorbents and quartz fiber filters. Analyses of PAH were carried out using HPLC with UV and Fluorescence detections. In this study, a significant seasonal variation in the distributions was observed, reflecting the effect of ambient temperature on the vapor-particle partitioning of PAH. The relationship between the vapor-particle distributions of the 3 to 5 rings PAH and ambient temperature is considered to be well described using the Langmuir adsorption concept. The estimated empirical constants for each PAH in the relationship, particularly for the more volatile compounds, were also comparable with results from other studies. However, it is still difficult to accurately estimate the initial vapor-particle distribution of PAH in the ambient air, since it is not known to what extent the trapped vapours originated from the particles laden in the filter by being volatilized or from the air samples initially present in the vapour phase. The distribution factors for volatile PAH with 3 to 4 rings appeared to be comparable with those in the literature. It should be noted, however, that these distribution factors give information only about the distribution of PAH between the two phases under a specific sampling condition, and hence may provide only semi -quantitative information on the vapor-particle distributions in the atmosphere.

  • PDF

Day and Night Distribution of Gas and Particle Phases Polycyclic Aromatic Hydrocarbons (PAHs) Concentrations in the Atmosphere of Seoul (서울 대기 중 기체 및 입자상 다환방향족탄화수소 (PAHs)의 낮·밤 분포 특성)

  • Lim, Hyung Bae;Kim, Yong Pyo;Lee, Ji Yi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.408-421
    • /
    • 2016
  • Day and night sampling for gas and particle phases PAHs were carried out in Seoul to characterize gas and particle phases PAHs concentrations in day and night times. There was no significant difference between day and night time for particle phase PAHs concentrations and phase distribution of PAHs, while, gas phase PAHs concentrations in daytime were about 1/2 of nighttime concentrations in both summer and winter due to photochemical reaction of gas phase PAHs during daytime. A high fraction of cancer risk for PAHs was attributed to particle phase PAHs and the excess cancer risk in winter was higher than in summer. The excess cancer risk level of total(gas+particle) PAHs in summer was partially observed when both gas and particle phase PAHs concentrations were considered as risk assessment. Based on the diagnostic ratios and factor analysis of PAHs concentrations, combustion(coal and natural gas) and vehicular emission might be the most significant contributors of PAHs and major factors for determining of PAHs concentration were different between day and night times.

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Kinetic Biodegradation of Polycyclic Aromatic Hydrocarbons for Five Different Soils under Aerobic Conditions in Soil Slurry Reactors

  • Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.581-588
    • /
    • 2021
  • In this study, soil slurry bioreactors were used to treat soils containing 16 polycyclic aromatic hydrocarbons (PAHs) for 35 days. Five different soil samples were taken from manufactured gas plant (MGP) and coal tar disposal sites. Soil properties, such as carbon content and particle distribution, were measured. These properties were significantly correlated with percent biodegradation and degradation rate. The cumulative amount of PAH degraded (P), degradation rate (Km), and lag phase (𝜆) constants of PAHs in different MGP soils for 16 PAHs were successfully obtained from nonlinear regression analysis using the Gompertz equation, but only those of naphthalene, anthracene, acenaphthene, fluoranthene, chrysene, benzo[k]fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are presented in this study. A comparison between total non-carcinogenic and carcinogenic PAHs indicated higher maximum amounts of PAH degraded in the former than that in the latter owing to lower partition coefficients and higher water solubilities (S). The degradation rates of total non-carcinogenic compounds for all soils were more than four times higher than those of total carcinogenic compounds. Carcinogenic PAHs have the highest partitioning coefficients (Koc), resulting in lower bioavailability as the molecular weight (MW) increases. Good linear relationships of Km, 𝜆, and P with the octanol-water partitioning coefficient (Kow), MW, and S were used to estimate PAH remaining, lag time, and biodegradation rate for other PAHs.

Numerical Analysis for the Detailed Structure and the Soot Formation Mechanism in Counterflow Ethylene-Air Nonpremixed Flame (대향류 에틸렌/공기 비예혼합 화염의 구조 및 Soot 생성 메커니즘 해석)

  • 임효준;김후중;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.40-54
    • /
    • 1999
  • The flame structure and soot formation in the counterflow Ethylene-Air nonpremixed flame are numerically analyzed. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of benzene and acetylene. In terms of the centerline velocity and the soot volume fraction, the predicted results are compared with the experimental data. The detailed discussion has been made for the sensitivity of model constants and the deficiencies of the present model. Numerical results indicated that the acetylene addition to the soot surface plays the dominant role in the soot mass growth for the counterflow nonpremixed flame.

  • PDF

Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame (아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석)

  • 김후중;김용모;윤명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames (마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

Indoor Exposure and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) via Public Facilities PM2.5, Korea (II)

  • Kim, Ho-Hyun;Lee, Geon-Woo;Yang, Ji-Yeon;Jeon, Jun-Min;Lee, Woo-Seok;Lim, Jung-Yun;Lee, Han-Seul;Gwak, Yoon-Kyung;Shin, Dong-Chun;Lim, Young-Wook
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2014
  • The purpose of the study is to evaluate the pollution level (gaseous and particle phase) in the public facilities for the PAHs, non-regulated materials, forecast the risk level by the health risk assessment (HRA) and propose the guideline level. PAH assessments through sampling of particulate matter of diameter < 2.5 ${\mu}m$ ($PM_{2.5}$). The user and worker exposure scenario for the PAHs consists of 24-hour exposure scenario (WIES) assuming the worst case and the normal exposure scenario (MIES) based on the survey. This study investigated 20 PAH substances selected out of 32 substances known to be carcinogenic or potentially carcinogenic. The risk assessment applies major toxic equivalency factor (TEF) proposed from existing studies and estaimates individual Excess Cancer Risk (ECR). The study assesses the fine dusts ($PM_{2.5}$) and the exposure levels of the gaseous and particle PAH materials for 6 spots in each 8 facility, e.g. underground subway stations, child-care facilities, elderly care facilities, super market, indoor parking lot, terminal waiting room, internet caf$\acute{e}$ (PC-rooms), movie theater. For internet caf$\acute{e}$ (PC-rooms) in particular, that marks the highest $PM_{2.5}$ concentration and the average concentration of 10 spots (2 spots for each cafe) is 73.3 ${\mu}g/m^3$ (range: 6.8-185.2 ${\mu}g/m^3$). The high level of $PM_{2.5}$ seen in internet cafes was likely due to indoor smoking in most cases. For the gaseous PAHs, the detection frequency for 4-5 rings shows high and the elements with 6 rings shows low frequency. For the particle PAHs, the detection frequency for 2-3 rings shows low and the elements with 6 rings show high frequency. As a result, it is investigated that the most important PAHs are the naphthalene, acenaphthene and phenanthrene from the study of Kim et al. (2013) and this annual study. The health risk assessment demonstrates that each facility shows the level of $10^{-6}-10^{-4}$. Considering standards and local source of pollution levels, it is judged that the management standard of the benzo (a)pyrene, one of the PAHs, shall be managed with the range of 0.5-1.2 $ng/m^3$. Smoking and ventilation were considered as the most important PAHs exposure associated with public facility $PM_{2.5}$. This study only estimated for inhalation health risk of PAHs and focused on the associated cancer risk, while multiple measurements would be necessary for public health and policy.