DOI QR코드

DOI QR Code

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex

폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성

  • Kim, Dong-Yeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seo, Jun-Hee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Byungjin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Kyoung-Ku (Department of Chemical Engineering, Dong-Eui University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 김동영 (충남대학교 공과대학 응용화학공학과) ;
  • 서준희 (충남대학교 공과대학 응용화학공학과) ;
  • 이병진 (충남대학교 공과대학 응용화학공학과) ;
  • 강경구 (동의대학교 공과대학 화학공학과) ;
  • 이창수 (충남대학교 공과대학 응용화학공학과)
  • Received : 2021.02.25
  • Accepted : 2021.03.29
  • Published : 2021.06.30

Abstract

This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

본 연구는 무기 실리카 껍질(shell)과 유기 고분자 코어(core)로 구성된 매우 균일한 유-무기 복합체 입자 제조의 방법에 관한 것이다. 먼저, 미세유체 기술을 이용하여 균일한 크기를 지니는 유기 고분자 코어 입자를 제조하였다. 코어 입자의 제조 과정에서 코어 입자의 제조 과정에서 광 경화성 유기 물질이 포함된 분산상과 연속상의 유속을 독립적으로 제어함으로써 균일한 액적을 형성하였다. 액적이 형성됨과 동시에, 미세유체 채널의 말단에서 자외선 조사에 의해 액적이 광중합 되어 코어 입자로 형성된다. 더불어, 폴리알릴아민 하이드로클로라이드(polyallylamine hydrochloride, PAH)와 인산 이온(phosphate ion)으로 구성된 나노 복합체는 최적화된 pH 조건에서 수소결합과 정전기적 인력 같은 강력한 상호작용을 통해 코어 입자에 코팅된다. 폴리아민 나노 복합체에 존재하는 PAH 주쇄의 아민 그룹들은 규산(silicic acid)의 축합(condensation) 반응을 촉매하여, 코어 입자 표면의 실리카 나노입자 성장을 시킬 수 있었다. 따라서, 본 방법을 통해 유기 코어에 무기 실리카 나노입자로 코팅된 유-무기 복합체 입자를 제조할 수 있었다. 최종적으로, 본 연구에서 제시한 방법은 보다 온화하며 환경친화적인 조건 하에서 단시간 내에 유-무기 복합체 입자를 합성할 수 있으며, 다양한 모양과 크기를 갖는 코어 입자에 적용되어 넓게 활용될 수 있다.

Keywords

Acknowledgement

이 논문은 충남대학교 학술연구비에 지원을 받아 수행된 연구로 이에 감사드립니다.

References

  1. Wang, R., Zhang, Y., Lu, D., Ge, J., Liu, Z., and Zare, R. N., "Functional Protein-Organic/Inorganic Hybrid Nanomaterials," Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5(4), 320-328 (2013). https://doi.org/10.1002/wnan.1210
  2. Haleem, A., Syaal, S. B., Ajmal, M., Ambreen, J., Rauf, S., Ali, N., Muhammad, S., Shah, A., Zia, M. A., and Siddiq, M., "Silver and Palladium Nanoparticle Embedded Poly (n-isopropylacrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) Hybrid Microgel Catalyst with pH and Temperature Dependent Catalytic Activity," Korean J. Chem. Eng., 37(4), 614-622 (2020). https://doi.org/10.1007/s11814-020-0484-7
  3. Lee, S. H., and Lee, J. D., "Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries Using Silica-Coated Graphite," Korean Chem. Eng. Res., 58(1), 142-149 (2020).
  4. Kim, H. W., Lee, W.-Y., and Song, K. C., "Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents," Korean Chem. Eng. Res., 58(1), 36-43 (2020).
  5. Basak, S., "The Age of Multistimuli-Responsive Nanogels: The Finest Evolved Nano Delivery System in Biomedical Sciences," Biotechnol. Bioprocess Eng., 25, 655-669 (2020). https://doi.org/10.1007/s12257-020-0152-0
  6. He, Q., and Shi, J., "Mesoporous Silica Nanoparticle Based Nano Drug Delivery Systems: Synthesis, Controlled Drug Release and Delivery, Pharmacokinetics and Biocompatibility," J. Mater. Chem., 21(16), 5845-5855 (2011). https://doi.org/10.1039/c0jm03851b
  7. Green, D. L., Lin, J. S., Lam, Y.-F., Hu, M. Z.-C., Schaefer, D. W., and Harris, M. T., "Size, Volume Fraction, and Nucleation of Stober Silica Nanoparticles," J. Colloid Interface Sci., 266(2), 346-358 (2003). https://doi.org/10.1016/S0021-9797(03)00610-6
  8. Stober, W., Fink, A., and Bohn, E., "Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range," J. Colloid Interface Sci., 26(1), 62-69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  9. Moghal, J., Reid, S., Hagerty, L., Gardener, M., and Wakefield, G., "Development of Single Layer Nanoparticle Anti-Reflection Coating for Polymer Substrates," Thin Solid Films, 534, 541-545 (2013). https://doi.org/10.1016/j.tsf.2013.03.005
  10. Ribeiro, T., Baleizao, C., and Farinha, J. P. S., "Functional Films from Silica/Polymer Nanoparticles," Materials, 7(5), 3881-3900 (2014). https://doi.org/10.3390/ma7053881
  11. Mebert, A. M., Aime, C., Alvarez, G. S., Shi, Y., Flor, S. A., Lucangioli, S. E., Desimone, M. F., and Coradin, T., "Silica Core-Shell Particles for the Dual Delivery of Gentamicin and Rifamycin Antibiotics," J. Mater. Chem., B, 4(18), 3135-3144 (2016). https://doi.org/10.1039/C6TB00281A
  12. Nguyen, T. H., Mai, N. T., Reddy, V. R. M., Jung, J. H., and Truong, N. T. N., "Synthesis of Silica Aerogel Particles and Its Application to Thermal Insulation Paint," Korean J. Chem. Eng., 37(10), 1803-1809 (2020). https://doi.org/10.1007/s11814-020-0574-6
  13. Dey, R., and Samanta, A., "Microwave-Synthesized High-performance Mesoporous SBA-15 Silica Materials for CO2 Capture," Korean J. Chem. Eng., 37(11), 1951-1962 (2020). https://doi.org/10.1007/s11814-020-0596-0
  14. Hong, S.-S., "Synthesis of Ti-SBA-15 Doped with Lanthanide Ions and Their Photocatalytic Activity," Clean Technol., 26(1), 7-12 (2020).
  15. Park, J. H., Cho, G. H., Hwang, R. H., Baek, J. H., and Yi, K. B., "Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction," Clean Technol., 26(2), 145-150 (2020). https://doi.org/10.7464/KSCT.2020.26.2.145
  16. Han, S.-J., Shin, K., Suh, K.-D., and Ryu, J.-H., "Monodisperse Micrometer-Ranged Poly(methyl methacrylate) Hybrid Particles Coated with a Uniform Silica Layer," Macromol. Res., 16(5), 399-403 (2008). https://doi.org/10.1007/BF03218536
  17. Chen, M., Zhou, S., Wu, L., Xie, S., and Chen, Y., "Preparation of Silica-Coated Polystyrene Hybrid Spherical Colloids," Macromol. Chem. Phys., 206(18), 1896-1902 (2005). https://doi.org/10.1002/macp.200500200
  18. Kim, D.-Y., Jin, S. H., Jeong, S.-G., Lee, B., Kang, K.-K., and Lee, C.-S., "Microfluidic Preparation of Monodisperse Polymeric Microspheres Coated with Silica Nanoparticles," Sci. Rep., 8(1), 1-11 (2018). https://doi.org/10.1038/s41598-017-17765-5
  19. Lutz, K., Groger, C., Sumper, M., and Brunner, E., "Biomimetic Silica Formation: Analysis of the Phosphate-Induced Self-Assembly of Polyamines," Phys. Chem. Chem. Phys., 7(14), 2812-2815 (2005). https://doi.org/10.1039/b505945c
  20. Brunner, E., Lutz, K., and Sumper, M., "Biomimetic Synthesis of Silica Nanospheres Depends on the Aggregation and Phase Separation of Polyamines in Aqueous Solution," Phys. Chem. Chem. Phys., 6(4), 854-857 (2004). https://doi.org/10.1039/b313261g
  21. Neville, F., Broderick, M. J. F., Gibson, T., and Millner, P. A., "Fabrication and Activity of Silicate Nanoparticles and Nanosilicate-Entrapped Enzymes Using Polyethyleneimine As a Biomimetic Polymer," Langmuir., 27(1), 279-285 (2011). https://doi.org/10.1021/la1033492
  22. Bak, Y.-C., "Production of Vaterite Type Calcium Carbonate by Using Oyster Shell Waste with Lysine," Korean Chem. Eng. Res., 59(1), 118-126 (2021).
  23. Neville, F., Murphy, M., and Wanless, E. J., "The Formation of Polyethyleneimine-Trimethoxymethylsilane Organic-Inorganic Hybrid Particles," Colloids Surf. A: Physicochem. Eng. Asp., 431(20), 42-50 (2013). https://doi.org/10.1016/j.colsurfa.2013.04.022
  24. Nguyen, Q. X., Belgard, T. G., Taylor, J. J., Murthy, V. S., Halas, N. J., and Wong, M. S., "Water-Phase Synthesis of Cationic Silica/Polyamine Nanoparticles," Chem. Mater., 24(8), 1426-1433 (2012). https://doi.org/10.1021/cm203132m
  25. Kang, K.-K., Oh, H.-S., Kim, D.-Y., Shim, G., and Lee, C.-S., "Synthesis of Silica Nanoparticles Using Biomimetic Mineralization with Polyallylamine Hydrochloride," J. Colloid Interface Sci., 507(1), 145-153 (2017). https://doi.org/10.1016/j.jcis.2017.07.115
  26. Bagaria, H. G., and Wong, M. S., "Polyamine-Salt Aggregate Assembly of Capsules As Responsive Drug Delivery Vehicles," J. Mater. Chem., 21(26), 9454-9466 (2011). https://doi.org/10.1039/c1jm10712g
  27. Bagaria, H. G., Kadali, S. B., and Wong, M. S., "Shell Thickness Control of Nanoparticle/Polymer Assembled Microcapsules," Chem. Mater., 23(2), 301-308 (2011). https://doi.org/10.1021/cm102472h
  28. Nam, J.-O., Choi, C.-H., Kim, J., Kang, S.-M., and Lee, C.-S., "Fabrication of Polymeric Microcapsules in a Microchannel Using Formation of Double Emulsion," Korean Chem. Eng. Res., 51(5), 597-601 (2013). https://doi.org/10.9713/kcer.2013.51.5.597
  29. Choi, C.-H., Weitz, D. A., and Lee, C.-S., "One Step Formation of Controllable Complex Emulsions: From Functional Particles to Simultaneous Encapsulation of Hydrophilic and Hydrophobic Agents into Desired Position," Adv. Mater., 25(18), 2536-2541 (2013). https://doi.org/10.1002/adma.201204657
  30. Jin, S. H., Kim, C., Lee, B., Shim, K.-R., Kim, D. Y., and Lee, C.-S., "Manufacturing of Monodisperse Pectin Hydrogel Microfibers Using Partial Gelation in Microfluidic Devices," Clean Technol., 23(3), 270-278 (2017). https://doi.org/10.7464/ksct.2017.23.3.270
  31. Kang, K.-K., Lee, B., and Lee, C.-S., "Recent Progress in the Synthesis of Inorganic Particulate Materials Using Microfluidics," J. Taiwan Inst. Chem. Eng., 98, 2-19 (2019). https://doi.org/10.1016/j.jtice.2018.08.027
  32. Jin, S. H., Kim, T., Oh, D., Kang, K.-K., and Lee, C.-S., "Preparation of Monodisperse PEGDA Microparticles Using a Dispensing Needle Based Microfluidic Device," Korean Chem. Eng. Res., 57(1), 58-64 (2019).
  33. Chuang, I.-S., and Maciel, G. E., "A Detailed Model of Local Structure and Silanol Hydrogen Bonding of Silica Gel Surfaces," J. Phys. Chem. B, 101(16), 3052-3064 (1997). https://doi.org/10.1021/jp9629046
  34. Brown, M. A., Arrigoni, M., Heroguel, F., Redondo, A. B., Giordano, L., Van Bokhoven, J. A., and Pacchioni, G., "pH Dependent Electronic and Geometric Structures at the Water-Silica Nanoparticle Interface," J. Phys. Chem. C, 118(50), 29007-29016 (2014). https://doi.org/10.1021/jp502262f
  35. Cranford, S. W., Ortiz, C., and Buehler, M. J., "Mechanomutable Properties of a PAA/PAH Polyelectrolyte Complex: Rate Dependence and Ionization Effects on Tunable Adhesion Strength," Soft Matter, 6(17), 4175-4188 (2010). https://doi.org/10.1039/c0sm00095g
  36. Pismenskaya, N., Laktionov, E., Nikonenko, V., El Attar, A., Auclair, B., and Pourcelly, G., "Dependence of Composition of Anion-Exchange Membranes and Their Electrical Conductivity on Concentration of Sodium Salts of Carbonic and Phosphoric Acids," J. Membr. Sci., 181(2), 185-197 (2001). https://doi.org/10.1016/s0376-7388(00)00529-9
  37. Murthy, V. S., Rana, R. K., and Wong, M. S., "Nanoparticle-Assembled Capsule Synthesis: Formation of Colloidal Polyamine-Salt Intermediates," J. Phys. Chem. B, 110(51), 25619-25627 (2006). https://doi.org/10.1021/jp061826b
  38. Reis, A. V., Guilherme, M. R., S de Almeida, E. A. M., Kunita, M. H., Muniz, E. C., Rubira, A. F., and Tambourgi, E. B., "Copolymer Hydrogel Microspheres Consisting of Modified Sulfate Chondroitin-co-Poly (N-isopropylacrylamide)," J. Appl. Polym. Sci., 121(5), 2726-2733 (2011). https://doi.org/10.1002/app.33705
  39. Sanaeepur, H., Kargari, A., and Nasernejad, B., "Aminosilane-Functionalization of a Nanoporous Y-type Zeolite for Application in a Cellulose Acetate Based Mixed Matrix Membrane for CO2 Separation," RSC Adv., 4(109), 63966-63976 (2014). https://doi.org/10.1039/C4RA08783F
  40. Lou, Y., Liu, G., Liu, S., Shen, J., and Jin, W., "A Facile Way to Prepare Ceramic-Supported Graphene Oxide Composite Membrane via Silane-Graft Modification," Appl. Surf. Sci., 307, 631-637 (2014). https://doi.org/10.1016/j.apsusc.2014.04.088
  41. Chen, J., Li, Q., Xu, R., and Xiao, F., "Distinguishing the Silanol Groups in the Mesoporous Molecular Sieve MCM-41," Angew. Chem., Int. Ed., 34(23-24), 2694-2696 (1996). https://doi.org/10.1002/anie.199526941
  42. Paltrinieri, L., Wang, M., Sachdeva, S., Besseling, N. A. M., Sudholter, E. J. R., and De Smet, L. C. P. M., "Fe3O4 Nanoparticles Coated with a Guanidinium-Functionalized Polyelectrolyte Extend the pH Range for Phosphate Binding," J. Mater. Chem. A, 5(35), 18476-18485 (2017). https://doi.org/10.1039/C7TA04054G
  43. Mondal, A., and Mandal, B., "Synthesis and Characterization of Crosslinked Poly (vinylalcohol)/Poly (allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/Polysulfone Composite Membrane for CO2/N2 Separation," J. Membr. Sci., 446, 383-394 (2013). https://doi.org/10.1016/j.memsci.2013.06.052
  44. Lechner, C. C., and Becker, C. F. W., "Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation," Mar. Drugs, 13(8), 5297-5333 (2015). https://doi.org/10.3390/md13085297
  45. Lechner, C. C., and Becker, C. F. W., "Exploring the Effect of Native and Artificial Peptide Modifications on Silaffin Induced Silica Precipitation," Chem. Sci., 3(12), 3500-3504 (2012). https://doi.org/10.1039/c2sc20687k
  46. Kuo, P.-L., Chen, W.-F., and Liang, W.-J., "Proton Transportation in an Organic-Inorganic Hybrid Polymer Electrolyte Based on a Polysiloxane/Poly(allylamine) Network," J. Polym. Sci. A Polym. Chem., 43(15), 3359-3367 (2005). https://doi.org/10.1002/pola.20754