• 제목/요약/키워드: Particle volume fraction

검색결과 222건 처리시간 0.027초

LASER-INDUCED SOOT VAPORIZATION CHARACTERISTICS IN THE LAMINAE DIFFUSION FLAMES

  • Park, J.K.;Lee, S.Y.;Santor, R.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.95-99
    • /
    • 2002
  • The characteristics of soot vaporization induced by a high-energy Pulsed laser were studied in an ethylene-air laminar flame. A system consisting of two pulsed lasers was used for the experiments. The pulse from the first laser was used to vaporize the soot particles, and the delayed pulse from the second laser was used to measure the residual soot volume fraction. Laser-induced soot vaporization was characterized according to the initial particle size distribution. The results indicated that soot particles could not be completely vaporized simply by introducing a high intensity laser pulse. Residual soot volume fractions present after vaporization appeared to be insensitive to the initial soot particle size distribution. Since the soot vaporization effect is more pronounced in the region of high soot concentrations, this laser-induced soot vaporization technique may be a very useful tool for measuring major species in highly sooting flame.

체적비가 $SiC_{p}$/AL 복합재료의 기계적 및 피로균열진전 특성에 미치는 영향 (Effect of Volume Fraction on Mechanical and Fatigue Crack Growth Properties of SiC Particle Reinforced AL Alloy Composites)

  • 권재도;안정주;문윤배
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1301-1308
    • /
    • 1996
  • In order to save the energy and protect the environment, it were studied about ecomaterials with the developed countries as central figure. In the Metal Matrix Composites(MMCs), this trends appeared the development of the MMCs which had excellent mechanical properties in spite of the low volume fraction of reinforcement. Therefore, in this study, fatigue crack growth test, tensile and hardness test were conducted in order to investigate the mechanical and fatigue properties of 5 %, and 10 % $SiC_{p}$/Al composites. As the results, in the tensile and hardness test, tensile strength and hardness increased but fatigue crack growth rate decreased with $SiC_{p}$/Al volume fraction. And in the view of fatigue failured surface through the SEM, fatigue crack initiated around the SiC particle and in low $\Delta{K}$ regions, fatigue creck detoured the SiC particle but crack propagated through the SiC particle in the high $\DeltaK$ regions.

슬러리내 석탄입자의 광산란 특성 평가 (Evaluation on Light Scattering Behavior of a Pulverized Coal Suspension)

  • 황문경;남현수;김규보;송주헌
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.451-460
    • /
    • 2013
  • In a direct coal fuel cell (DCFC) system, it is essential to identify volume fraction of coal suspended in electrolyte melt in order to control its dispersion and fluidity. This requirement is compelling especially at anode channel where hot slurry is likely to flow at low velocity. In this study, light scattering techniques were employed to measure the volume fraction for a pulverized coal suspension with relatively high absorption coefficient. The particle size, scattering angle, and volume fraction were varied to evaluate their effects on the scattering behavior as well as scattering regime. The larger coal size and smaller forward scattering angle could provide a shift to more favorable scattering regime, i.e., independent scattering, where interferences of light scattering from one particle with others are suppressed.

Rheology and pipeline transportation of dense fly ash-water slurry

  • Usui, Hiromoto;Li, Lei;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.47-54
    • /
    • 2001
  • Prediction of the maximum packing volume fraction with non-spherical particles has been one of the important problems in powder technology. The sphericity of fly ash particles depending on the particle diameter was measured by means of a CCD image processing instrument. An algorithm to predict the maximum packing volume fraction with non-spherical particles is proposed. The maximum packing volume fraction is used to predict the slurry viscosity under well dispersed conditions. For this purpose, Simha's cell model is applied for concentrated slurry with wide particle size distribution. Also, Usui's model developed for aggregative slurries is applied to predict the non-Newtonian viscosity of dense fly ash - water slurry. It is certified that the maximum packing volume fraction for non-spherical particles can be successfully used to predict slurry viscosity. The pressure drop in a pipe flow is predicted by using the non-Newtonian viscosity of dense fly ash-water slurry obtained by the present model. The predicted relationship between pressure drop and flow rate results in a good agreement with the experimented data obtained for a test rig with 50 mm inner diameter tube. Base on the design procedure proposed in this study, a feasibility study of fly ash hydraulic transportation system from a coal-fired power station to a controlled deposit site is carried out to give a future prospect of inexpensive fly ash transportation technology.

  • PDF

Effect of Brownian Motion in Heat Transfer of H2O-Cu Nanofluid using LBM

  • Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권7호
    • /
    • pp.981-990
    • /
    • 2010
  • The main objective of this study is to investigate the fluid flow and the heat transfer characteristics of nanofluids using multi-phase thermal LBM and to realize theenhancement of heat transfer characteristics considered in the Brownian motion. In multi-phase, fluid component($H_2O$) is driven by Boussinesq approximation, and nanoparticles component by the external force gravity and buoyancy. The effect of Brownian motion as a random movement is modified to the internal velocity of nanoparticles(Cu). Simultaneously, the particles of both the phases assume the local equilibrium temperature after each collision. It has been observed that when simulating $H_2O$-Cu nanoparticles, the heat transfer is the highest, at the particle volume fraction 0.5% of the particle diameter 10 nm. The average Nusselt number is increased approximately by 33% at the particle volume fraction 0.5% of the particle diameter 10 nm when compared with pure water.

대기 중 유기염소계 살충제의 가스-입자 분배 (Gas-particle Partitioning of Organochlorine Pesticides in Atmosphere)

  • 최민규;천만영
    • 한국대기환경학회지
    • /
    • 제23권4호
    • /
    • pp.457-465
    • /
    • 2007
  • This study was performed to estimate the gas-particle partitioning of organochlorine pesticides (OCPs) in atmosphere, the samples were collected by PUF high volume air sampler for two years from June, 2000 to June, 2002. The gas phase fraction of ${\alpha/\gamma}-HCH$, heptachlor epoxide, ${\alpha/\gamma}-chlordane$ and trans-nonachlor was over 90%. But the gas phase fraction of ${\beta}-HCH$, p,p'-DDE, endosulfan sulfate, p,p'-DDD and p,p'-DDT was range of 20% through 80%, which means the gas phase fraction of OCPs components described above is sensitive to temperature. The correlation between the gas phase fraction and molecular weight of each OCPs component was not found in this research. The slope of regression line between gas-particle partitioning coefficient(${\log}K_p$) and subcooled liquid vapor(${\log}{P^o}_L$), gal-particle partitioning coefficient(${\log}K_p$) and octanol-air partitioning coefficient(${\log}K_{oa}$) which show -0.54 and 0.43 was not steep. So the equilibrium state between gas and particle was not reached and in this state the particulate fraction was low.

커먼레일 직접분사식 디젤엔진에서 시분해 레이저 유도 백열법을 이용한 매연입자의 배출 특성 (The Characteristics of Exhausted Soot Particles from a Common-Rail Direct Injection Diesel Engine by TIRE-LII)

  • 김규보;한휘영;장영준;전충환
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.78-85
    • /
    • 2007
  • Recently, diesel vehicles have been increased and their emission standards have been getting strict. The emission of diesel vehicles contains numerous dangerous compounds, especially particulate matters cause a serious environmental pollutant and affect to human health seriously. Thousands of studies have already reported that particulate matters are associated with respiratory and cardiovascular diseases, and death. Due to these, it is necessary to measure the soot concentration and soot particle size in laboratory flames or practical engines to recognize the soot formation, and develop the control strategies for soot emission. In this study, the characteristics of exhausted soot particle size and volume fraction from 2.0L CRDI diesel engine have been investigated as varying engine speed and load. Laser induced incandescence has been used to measure soot concentration. Time-resolved laser induced incandescence has been used to determine soot particle size in the engine. The soot volume fraction is increased as increasing engine load but soot volume fraction is decreased as increasing engine speed. The primary particle size is distributed about $35nm{\sim}60nm$ at each experimental conditions.

통계적 방법을 이용한 복합조직강의 변형률과 보이드 성장거동에 관한 연구 (A Study on Strain-Void Growth Mechanism of Dual Phase Steel by Statistical Method)

  • 오경훈;유용석;오택열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.533-538
    • /
    • 2000
  • Ductile fracture of dual phase steel begins with void nucleation, at martensite-ferrite interface of deformed martensite particle. In this study, void nucleation, growth, and coalescence under various strain were studied in dual phase steel. Therefore, by means of the heat treatment of low carbon steel, the study deals with void nucleation and growth for ferrite grain size and martensite volume fraction of dual phase steel using statistical method. Void nucleation and growth with increasing strain are shown depend upon the ferrite grain size. Voids volume fraction generally increase as ferrite grain size decease.

  • PDF

Experimental Study on Characteristics of Synergistic Effect of Fuel Mixing on Number Density and Size of Soot in Ethylene-base Counterflow Diffusion Flames by Laser Techniques

  • Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.378-386
    • /
    • 2009
  • The effect of fuel mixing on soot structure with methane, ethane, and propane to ethylene-base counterflow diffusion flames has been investigated by measuring the volume fraction, number density, and particle size of soot by adopting the light extinction/scattering techniques. The experimental result showed that the mixing of ethane and propane in ethylene diffusion flame increased soot volume fraction while the mixing of methane decreased. As compare to the ethylene-base flame, the diameters of soot particles for mixture flames are slightly smaller. While the soot number densities for the mixture flames are much higher. Thus, the increase in the soot volume fraction can be attributed to the appreciably increased soot number density by the fuel mixing.

Nanoemulsions containing Vitamin E acetate prepared by PIC(phase inversion composition) methods: Factors affecting droplet sizes

  • Kim, Eun-Hee;Cho, Wan-Goo
    • 한국응용과학기술학회지
    • /
    • 제30권4호
    • /
    • pp.602-611
    • /
    • 2013
  • We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by PIC(phase inversion composition) emulsification. This method relies on the formation of very fine oil droplets when water is added to oil/surfactant mixture. The oil-to-emulsion ratio content was kept constant (5 wt.%) while the surfactant-to-oil ratio (%SOR) was varied from 50 to 200 %. Oil phase composition (vitamin E to medium chain ester ratio, %VOR) had an effect on particle size, with the smallest droplets being formed below 60 % of VOR. Food-grade non-ionic surfactants (Tween 80 and Span 80) were used as an emulsifier. The effect of f on the droplet size distribution has been studied. In our system, the droplet volume fraction, given by the oil volume fraction plus the surfactant volume fraction, was varied from 0.1 to 0.3. The droplet diameter remains less than 350 nm when O/S is fixed at 1:1. The droplet size increases gradually as the increasing the volume fraction. Particle size could also be reduced by increasing the temperature when water was added to oil/surfactant mixture. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d < 50 nm). The PIC emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical applications.