• 제목/요약/키워드: Particle filters

검색결과 231건 처리시간 0.029초

사이클론-백 하이브리드형 집진장치에서 유동연결부 설계조건에 따른 유동균일성 전산해석 (CFD Analysis on the Flow in the Connection Duct of the Cyclone-Bag Hybrid Dust Collector)

  • 구성모;오원철;장혁상
    • 한국입자에어로졸학회지
    • /
    • 제12권4호
    • /
    • pp.115-126
    • /
    • 2016
  • Numerical analysis was done to evaluate the movement of the particles and the fluid inside of the cyclone-bag hybrid dust collector. Flow discharged from the cyclone in the hybrid particle collector has swirl pattern, and it results in the biased flow to the bag filters and deteriorates the collection performance of the bag filter. The current study is to evaluate the effect of the duct lengths and the baffle arrays in the connection duct by the computational methods. Main concerns of the analysis are how to improve the uniformity of the internal flow between the cyclone and the bag filter. Numerical analysis was done to check the particle removal efficiencies of the system with respect to the flow characteristics which is expressed in RMS values of the upward flow inside of the connection duct. The flow pattern inside of the connection duct is evaluated under different the duct lengths and the baffle arrays. In case of the reference geometry the RMS value of inside flow was 56.7%, and the value was decreased to 30.1% by controlling the lengths of duct. The effects of baffle was also evaluated, the RMS value of flow could be decreased 55.2% and so on. But the pressure drop across the baffles becomes high and the system efficiency becomes lower.

디젤 입자상물질의 크기분포 특성에 관한 실험적 연구 (Experimental Study on the Size Distribution of Diesel Particulate Matter (DPM))

  • 연익준;권순박;이규원
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.11-17
    • /
    • 2002
  • Diesel particulate matter (DPM) is known to be one of the major harmful emissions produced by diesel engines. The majority of diesel particles are in the range of smaller than $I{\mu}\textrm{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Diesel particles are known to have deleterious effects upon human health because they penetrate human respiratory tract and have negative effects on the health. The measurement of the number distribution of nanometer size particles (nanoparticles) in the diesel exhaust emission is important in order to evaluate their environmental and health impact, and to develop new types of diesel particulate filters. In this study, we directly sampled particulate matters emitted from a diesel truck mounted on the chassis dynamometer by a flow separator and dilution system, and measured the nanoparticles using two types of differential mobility analyzers combined with a Faraday cup electrometer (FCE) and a condensation particle counter (CPC). The particle size distributions were analyzed by changing engine operation condition, i.e. ratio of engine loading. The total number concentration of particles were increased with the engine loading ratio and the nanoparticles (less than 50nm) were affected by hydrocarbon (HC) concentration in the diesel exhaust.

A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1520-1529
    • /
    • 2013
  • In this paper, we propose and assess the performance of "H infinity filter ($H_{\infty}$, HIF)" and "cost reference particle filter (CRPF)" in the problem of tracking a target based on the measurements of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that we do not need to know the noise statistics of the problem in their applications. The performance of the extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise information is perfectly known for the applications of the EKF. Simulation results show that CRPF outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically varying and nonlinearly modeled states with unknown noise statistics.

Improvement of a High-volume Aerosol Particle Sampler for Collecting Submicron Particles through the Combined Use of a Cyclone with a Smoothened Inner Wall and a Circular Cone Attachment

  • Okuda, Tomoaki;Isobe, Ryoma
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권2호
    • /
    • pp.131-137
    • /
    • 2017
  • A cyclone is an effective tool to facilitate the collection of aerosol particles without using filters, and in cell exposure studies is able to collect a sufficient amount of aerosol particles to evaluate their adverse health effect. In this study, we examined two different methods to improve the aerosol particle collection efficiency of a cyclone. The individual and combined effects of reducing the surface roughness of the inner wall of the cyclone and of using a circular cone attachment were tested. The collection efficiency of particles of diameter $0.2{\mu}m$ was improved by approximately 10% when using a cyclone with a smoothened inner wall (average roughness $Ra=0.08{\mu}m$) compared with the original cyclone ($Ra=5.1{\mu}m$). A circular cone attachment placed between the bottom section of the cyclone and the top section of a collection bottle, resulted in improved collection of smaller particles without the attachment. The 50% cutoff diameter of the modified cyclone (combined use of smoothened inner wall and attachment) was $0.23{\mu}m$ compared to $0.28{\mu}m$ in the original model. The combined use of these two techniques resulted in improved collection efficiency of aerosol particles.

CMP 공정에서 슬러리 필터의 효율 개선에 관한 연구 (A Study on Improvement of Slurry Filter Efficiency in the CMP Process)

  • 박성우;서용진;김상용;이우선;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 반도체재료
    • /
    • pp.34-37
    • /
    • 2001
  • As the integrated circuit device shrinks to smaller dimensions, chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the inter-metal dielectrics (IMD) layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. To prevent agglomerated slurry particle from inflow, we installed 0.5${\mu}m$ POU (point of use) filter, which is depth-type filter and has 80% filtering efficiency for the $1.0{\mu}m$ size particle. In this paper, we studied the relationship between defect generation and pad count to understand the exact efficiency of the slurry filtration, and to find out the appropriate pad usage. Our preliminary results showed that it is impossible to prevent defect-causing particles perfectly through the depth-type filter. Thus, we suggest that it is necessary to optimize the flow rate of slurry to overcome depth type filters weak-point, and to install the high spray of de-ionized Water (DIW) with high pressure.

  • PDF

필터와 이온을 이용한 공기살균법 연구동향 (Air sterilization using filter and air ions: A review)

  • 우창규;김학준;김용진;한방우
    • 한국입자에어로졸학회지
    • /
    • 제12권3호
    • /
    • pp.73-80
    • /
    • 2016
  • Bioaerosol inactivation becomes important as people recognize the significance on the health effects of bioaerosols. There are several ways to inactivate such bioaerosols such as antimicrobial filters, UV, etc. For the on-filter-inactivation, proper antimicrobial materials coating should be applied. Recently, air ions are adopted to effectively reduce germ and virus activity. Limitations arise when each method is applied separately. Coating materials can experience chemical instability over time and temperature. Ionizers can generate ozone to prepare high ion concentrations. Combinations of developed techniques to enhance the inactivation efficiency were suggested. Researches on the air sterilization are reviewed and outlook is highlighted. Proper techniques such as combinations of filter material coating and air ion generation can be used to make air quality better for human living.

세라믹캔들필터 집진 전후 Ash의 크기 및 분포에 관한 연구 (A study on Ash size and its distribution on cleaning of ceramic candle filter)

  • 정진도;이중범;김종영
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1639-1648
    • /
    • 1996
  • Protection of gas turbine blade from its erosion and abrasion at high temperature and pressure is the first goal to cleanup the hot gas upstream for IGCC and PFBC. Ceramic filters represent an attractive technology for particle removal at high temperature and high pressure condition. They have demonstrated being a good system for improvement of thermal efficiency and reduction of effluent pollutants in advanced coal-based power systems such as IGCC and PFBC. Ceramic filter elements currently being developed were evaluated in the previous paper. In this paper, we measured the ash size and distribution on cleaning of ceramic candle filter. The results are as follows : in this experimental range, ceramic candle filter was shown to be fully adequate for the removal process of dust under high temperature and pressure. Also filtration efficiency of ceramic candle filter was higher than 98% compared with the regulation limit of particle size in gas turbine inlet.

Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant

  • Shibatani, Saori;Nakanishi, Motohiro;Mizuno, Nobumi;Mishima, Fumihito;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Maeda, Tatsumi;Shigemoto, Naoya;Nishijima, Shigehiro
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.19-22
    • /
    • 2016
  • A Superconducting High Gradient Magnetic Separation (HGMS) system is proposed for treatment of feed-water in thermal power plant [1]. This is a method to remove the iron scale from feed-water utilizing magnetic force. One of the issues for practical use of HGMS system is to extend continuous operation period. In this study, we designed the magnetic filters by particle trajectory simulation and HGMS experiments in order to solve this problem. As a result, the quantity of magnetite captured by each filter was equalized and filter blockage was prevented. A design method of the magnetic filter was proposed which is suitable for the long-term continuous scale removal in the feed-water system of the thermal power plant.

단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측 (Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method)

  • 성재용;박상민;유정열
    • 한국가시화정보학회지
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF

다양한 형상의 충전물로 채워진 충전층 집진기의 집진성능 예측 (Prediction of collection performance for a granular bed filter filled with various shapes of packing material)

  • 박재현;이명화
    • 한국입자에어로졸학회지
    • /
    • 제19권4호
    • /
    • pp.145-154
    • /
    • 2023
  • Granular bed filters are widely used to remove particulate matter in flue gas and are filled with various shapes of packing material. The packing material plays an important role in determining the overall collection performance, such as pressure drop and collection efficiency. The pressure drop of a granular bed filter has been calculated using the Ergun equation, while the collection efficiency has been predicted using the log-penetration equation based on the single sphere theory. However, a prediction equation of collection efficiency for a granular bed filter filled with non-spherical packing materials has not been suggested yet. Therefore, in this study, three different shapes of packing materials (sphere, cylinder, and irregular) were prepared to propose a prediction equation. The pressure drop and collection efficiency in a granular bed filter filled with each shape of packing material were measured experimentally and compared with theoretically predicted values. We found that experimentally measured pressure drops matched well with values theoretically predicted using the Ergun equation considering the shape factor. However, experimental collection efficiencies were higher than theoretical ones predicted by the log-penetration equation using the single sphere theory. We modified the log-penetration equation by employing a shape factor and found a good relationship between experimental and theoretical collection efficiencies.