• Title/Summary/Keyword: Particle collision

Search Result 148, Processing Time 0.021 seconds

Discrete element simulations of continental collision in Asia (아시아 대륙충돌의 개별요소 시뮬레이션)

  • Tanaka Atsushi;Sanada Yoshinori;Yamada Yasuhiro;Matsuoka Toshifumi;Ashida Yuzuru
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analogue physical modelling using granular materials (i.e., sandbox experiments) has been applied with great success to a number of geological problems at various scales. Such physical experiments can also be simulated numerically with the Discrete Element Method (DEM). In this study, we apply the DEM simulation to the collision between the Indian subcontinent and the Eurasian Plate, one of the most significant current tectonic processes in the Earth. DEM simulation has been applied to various kinds of dynamic modelling, not only in structural geology but also in soil mechanics, rock mechanics, and the like. As the target of the investigation is assumed to be an assembly of many tiny particles, DEM simulation makes it possible to treat an object with large and discontinuous deformations. However, in DEM simulations, we often encounter difficulties when we examine the validity of the input parameters, since little is known about the relationship between the input parameters for each particle and the properties of the whole assembly. Therefore, in our previous studies (Yamada et al.,2002a,2002b,2002c), we were obliged to tune the input parameters by trial and error. To overcome these difficulties, we introduce a numerical biaxial test with the DEM simulation. Using the results of this numerical test, we examine the validity of the input parameters used in the collision model. The resulting collision model is quite similar to the real deformation observed in eastern Asia, and compares well with GPS data and in-situ stress data in eastern Asia.

Molecular Dynamics Simulations of Small n-Alkane Clusters in a Mesoscopic Solvent

  • Ko, Seo-Young;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.771-776
    • /
    • 2003
  • The structural and dynamic properties of small n-alkane clusters embedded in a mesoscopic solvent are investigated. The solvent interactions are taken into account through a multi-particle collision operator that conserves mass, momentum and energy and the solvent dynamics is updated at discrete time intervals. The cluster molecules interact among themselves and with the solvent molecules through intermolecular forces. The properties of n-heptane and n-decane clusters interacting with the mesoscopic solvent molecules through repulsive Lennard-Jones interactions are studied as a function of the number of the mesoscopic solvent molecules. Modifications of both the cluster and solvent structure as a result of cluster-solvent interactions are considered. The cluster-solvent interactions also affect the dynamics of the small n-alkane clusters.

The Present Status of Development of Inductively Coupled Plasma Simulator based on Fluid Model (유체 모델을 기반으로 하는 유도 결합 플라즈마 시뮬레이터 개발 현황)

  • Kwon, D.C.;Yoon, N.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.151-163
    • /
    • 2009
  • The domestic development status of Inductively Coupled Plasma (ICP) simulator which is based on fluid model is explained. As each part which composes the unified simulator, electron heating module, charged and neutral particle transport module, surface reaction module including a sheath model, and GUI (Graphic User Interface) with pre- and post-processors are described in order. Also, we present data base status of chemical reaction and physical collision, which has been applied to the recently developed simulator until now. Lastly, some future plans of development are suggested.

Analysis of Microchannel Flows Using a Model Boltzmann Equation (모델 볼츠만방정식을 이용한 마이크로채널 유동 해석)

  • Chung C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.99-105
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in microchannels. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. The method does not suffer from statistical noise which is common in particle based methods and requires much less amount of computational effort. Calculations are made for flows in simple microchannels and a microfluidic system consisting of two microchannels in series. The method is assessed by comparing the results with those from several different methods and available experimental data.

  • PDF

Numerical Simulation of Low-Speed Gas Flows Around a Micro-Plate (미소평판 주위의 저속 유동장 해석)

  • Chung C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.106-112
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows around a micro-plate. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. The method does not suffer from statistical noise which is common in particle based methods and requires much less amount of computational effort. Calculations are made for flows around a micro-scale flat plate with a finite length of 20 microns. The method is assessed by comparing the results with those from several different methods and available experimental data.

  • PDF

Simulation of Low-Speed Rarefied Gas Flows Around a Flat Plate (평판 주위의 저속 희박기체 유동장 해석)

  • Chung C. H.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed rarefied gas flows around a flat plate. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. The method does not suffer from statistical noise which is common in particle based methods and requires much less amount of computational effort. Calculations are made for flows around a micro-scale flat plate with a finite length of 20 microns. The method is assessed by comparing the results with those from several different methods and available experimental data.

Analysis of Gravitational Coagulation of Aerosol Particles (중력 침강에 의한 입자 응집의 해석적 연구)

  • Jin, Hyeong-A;Jeong, Chang-Hun;Lee, Gyu-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.303-312
    • /
    • 1998
  • To obtain the solution to the time-dependent particle size distribution of an aerosol undergoing gravitational coagulation, the moment method was used which converts the non linear integro-differential equation to a set of ordinary differential equations. A semi-numerical solution was obtained using this method. Subsequently, an analytic solution was given by approximating the collision kernel into a form suitable for the analysis. The results show that during gravitational coagulation, the geometric standard deviation increases and the geometric mean radius decreases as time increases.

  • PDF

Numerical Analysis of Ultra-Thin Gas Film Lubrication (초박막 기체윤활의 수치해석)

  • Chung C. H.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.64-70
    • /
    • 2004
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in a gas slider bearing. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for a flow in a micro-channel between an inclined slider and a moving disk drive platter The results are compared well with those from the DSMC method. The present method does not suffer from statistical noise which is common in particle-based methods and requires much less computational effort.

Numerical Analysis of Ultra-Thin Gas Film Lubrication (초박막 기체윤활의 수치해석)

  • Chung C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.207-213
    • /
    • 2004
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in a gas slider bering, The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for a flow in a micro-channel between an inclined slider and a moving disk drive platter. The results are compared well with those from the DSMC method. The present method does not suffer from statistical noise which is common in particle based methods and requires much less computational effort.

  • PDF

Effects of galaxy-galaxy encounters on galactic spin and central mass distribution

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.61.4-62
    • /
    • 2018
  • We use smoothed particle hydrodynamics (SPH) models to study the evolution of galactic spin and the distribution of gas and young stars in the inner region of the galaxies through galaxy encounters. Specifically, we perform numerical simulations of interactions of a late- or an early-type galaxy with either a late- or an early-type galaxy with and without a gas halo at the closest approach distances of 25 and 50 kpc. We find that an early-type galaxy encountering a late-type galaxy have a higher galactic spin and more gas and young stars in the central region of the galaxy after the collision. We are analyzing the role of a gas halo on the changes of galactic spin and central mass distribution during various galaxy-galaxy encounters.

  • PDF