• 제목/요약/키워드: Particle Sphericity

검색결과 23건 처리시간 0.023초

입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구 (Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

전자교반시 Al-7wt%Si합금의 초정입자에 미치는 유동의 영향 (The Effect of Fluid Flow on the Primary Particle of Al-7wt%Si Alloy in Electromagnetic Stirring)

  • 임성철;윤의박
    • 한국주조공학회지
    • /
    • 제16권6호
    • /
    • pp.565-575
    • /
    • 1996
  • In this study, to gain the semi-solid alloy we employed the electromagnetic rotation by a induction motor of 3-phases and 2-poles for Al-7wt%Si alloy and observed the size of primary solid particle, distribution state of primary solid particle, the degree of sphericity, and fraction of primary solid for the evaluation of its results. The size of primary solid particle increases from $98{\mu}m$ to $118{\mu}m$ as solid fraction increases from 0.2 to 0.5. The degree of sphericity increased as the solid fraction increased. Solid particles obtained from the microstructures of isothermally held sample were coarsened and the degree of sphericity was enhanced as isothermal holding time increased. However, when the sample was stirred for more than 40min, solid particles merged together and liquid phase was entrapped within the cluster of solid particles. The size of primary solid particle was not changed significantly with the variation of input voltages by 160V over which solid particles began to merge together to be a large cluster of about $170{\mu}m$ at 180V. The standard deviation and the degree of sphericity were not changed significantly with the variation of input voltage.

  • PDF

LPBF용 타이타늄 합금 분말의 유변특성에 대한 입자 구형도의 영향 (Effect of Particle Sphericity on the Rheological Properties of Ti-6Al-4V Powders for Laser Powder Bed Fusion Process)

  • 김태윤;강민혁;김재혁;홍재근;유지훈;이제인
    • 한국분말재료학회지
    • /
    • 제29권2호
    • /
    • pp.99-109
    • /
    • 2022
  • Powder flowability is critical in additive manufacturing processes, especially for laser powder bed fusion. Many powder features, such as powder size distribution, particle shape, surface roughness, and chemical composition, simultaneously affect the flow properties of a powder; however, the individual effect of each factor on powder flowability has not been comprehensively evaluated. In this study, the impact of particle shape (sphericity) on the rheological properties of Ti-6Al-4V powder is quantified using an FT4 powder rheometer. Dynamic image analysis is conducted on plasma-atomized (PA) and gas-atomized (GA) powders to evaluate their particle sphericity. PA and GA powders exhibit negligible differences in compressibility and permeability tests, but GA powder shows more cohesive behavior, especially in a dynamic state, because lower particle sphericity facilitates interaction between particles during the powder flow. These results provide guidelines for the manufacturing of advanced metal powders with excellent powder flowability for laser powder bed fusion.

모래 입자의 형상과 내부마찰각의 상관관계에 관한 연구 (Shear Resistance of Sandy Soils Depending on Particle Shape)

  • 서형석;조유민;윤태섭;김광염
    • 한국지반공학회논문집
    • /
    • 제32권6호
    • /
    • pp.41-48
    • /
    • 2016
  • 본 연구에서는 영상처리 기법을 이용해 총 9개의 모래 시료의 형상을 정량화하여 전단강도와의 상관관계를 분석하였다. 분석 시료는 6개의 자연모래 시료와 3개의 부순모래 시료이며 이를 고해상도 3차원 X-ray CT 촬영하여 그로부터 개별 입자 영상을 분리하고 구형도(Sphericity) 및 이완도(Elongation)와 같은 형상 계수를 통해 모래 시편의 형상을 정량화 하였다. 또한 시료의 상대밀도를 다르게 조성하여 직접전단시험을 수행해 첨두내부마찰각(Peak friction angle)과 극한내부마찰각(Critical state friction angle)을 획득하였다. 시료의 구형도가 감소하고 이완도가 증가할수록, 첨두내부마찰각과 극한내부마찰각은 유사한 기울기를 보이며 증가함을 확인하였으며 두 내부마찰각 사이 절댓값 차이는 입자 형상보다는 상대밀도 차이로부터 기인함을 확인하였다.

전자교반에 의한 Cu-0.5wt%Zr 합금의 반응고 조직제어에 관한 연구 (The Effect of Electromagnetic Stirring on the Semi-Solid Microstructure of Cu-0.15wt%Zr Alloy)

  • 임성철;이흥복;김경훈;권혁천;윤의박
    • 한국주조공학회지
    • /
    • 제26권1호
    • /
    • pp.40-45
    • /
    • 2006
  • Most of the work reported concerned the semi-solid processing of low melting point alloys, and in particular light alloys of aluminum and magnesium. The purpose of this paper is to develop a semi-solid microstructure of Cu alloys using electromagnetic stirring applicable for squirrel cage rotor of induction motor. The size of primary solid particle and the degree of sphericity as a function of the variation in cooling rate, stirring speed, and holding time were observed. By applying electromagnetic stirring, primary solid particles became finer and rounder relative to as-cast sample. As the input frequency increased from 30 to 40 Hz, particle size decreased. The size of primary solid particle was found to be decreased with increasing cooling rate. Also, it decreased with stirring up to 3 minutes but increased above that point. The degree of sphericity became closer to be 1 with hold time. Semi-solid microstructure of Cu alloys, one of the high melting point alloys, could be controlled by electromagnetic stirring.

Fourier descriptor를 이용한 주문진표준사의 형상특성분석 (Analysis on Particle Shape Characteristics of Jumunjin Sand using Fourier Descriptor)

  • 민덕기;김성곤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1182-1189
    • /
    • 2010
  • The mechanical behavior of a granular material is governed by the applying effective stresses and its skeletal structure which is considered to be the packing of particles giving overall density and degree of anisotropic. Factors that affect soil packing are the particle size, size distribution and shape, and the arrangement of grain contact. Soil particle size and shape are the most important factor, but difficult to quantify. In this study, 2D Fourier analysis is applied to quantify the shape of granular particles. Jumunjin sand was used in the experiment and particle images are captured using an optical microscope. The results showed that three lower order Fourier descriptor are closely related with roundness, sphericity of the granular particle. Also statistical approach is used to determine roundness, form factor, elongation ratio, roughness of Jumunjin sand.

  • PDF

영남지역 주요 모암지대별 밭토양 모래입자의 형태적 특성 및 토양수분특성곡선의 차이에 관한 연구 (Differences in Morphological Properties and Soil Moisture Characteristics Curve of Cultivated Land Derived from Major Parent Rocks in Yeong-nam Province Areas)

  • 손연규;정연태;손일수
    • 한국토양비료학회지
    • /
    • 제32권3호
    • /
    • pp.211-214
    • /
    • 1999
  • 영남지역의 대표적인 밭토양의 모암지대별 특성차이를 알기 위해 모래입자의 형태적 특성인 구형도를 조사하고 토양수분특성곡선을 구한 결과는 다음과 같다. 모래인자의 형태적 특성인 구형도는 모래입자의 크기에 관계없이 화성암에서 0.56~0.61, 퇴적암에서 0.63~0.67의 범위로 퇴적암 유래 토양에서 높게 나타났으며 화성암 유래 토양의 경우에는 입자가 작을수록 구형도가 더 낮은 경향을 보였다. 토양수분특성곡선은 사양질에서보다 식 양질토양에서 모암간에 큰 차이가 있었고, 화성암에서보다는 퇴적암에서 유래된 토양이 보수력이 높은 경향이었다. 유효수분율에 의하여 scale을 변환시킨 결과 토성이나 모암지대에 상관없이 토양수분 특성곡선이 거의 변화를 보이지 않는 것으로 나타났다. 그러나 퇴적암지대의 식양질 토양에서는 조금 벗어난 값을 보였다.

  • PDF

새로운 비구형 입자 성장 해석 모델 (A New Model for the Analysis of Non-Spherical Particle Growth)

  • 정재인;최만수
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.1020-1027
    • /
    • 2000
  • A simple model for describing the non-spherical particle growth phenomena has been developed. In this model, we solve simultaneously particle volume and surface area conservation sectional equations that consider particles' non-sphericity. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. This model was compared with a simple monodisperse-assumed model and more rigorous two-dimensional sectional model. For comparison, formation and growth of silica particles have been simulated in a constant temperature reactor environment. This new model showed good agreement with the detailed two-dimensional sectional model in total number concentration and primary particle size. The present model successfully predicted particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

교반속도 및 등온교반온도에 따른 AZ91D 마그네슘합금 반응고 주조재의 미세조직 변화 (Microstructural Change in Rheocast AZ91D Magnesium Alloys with Stirring Rate and Isothermal Stirring Temperature)

  • 임창동;신광선
    • 한국주조공학회지
    • /
    • 제23권3호
    • /
    • pp.130-136
    • /
    • 2003
  • Rheocasting of AZ91D magnesium alloys yielded the microstructure consisted of the spherical primary particles in the matrix which is different from conventional casting. Rheocast ingots were produced under various processing conditions using batch type rheocaster. Morphology of primary particles was changed from rosette-shape to spherical shape with increasing stirring rate$(V_s)$ and decreasing isothermal stirring temperature$(T_s)$. With increasing $V_s$, more effective shearing between the particles occurred rather than the agglomeration and clustering, so the primary particle size decreased. But with decreasing $T_s$, primary particle size increased mainly due to sintering and partially Ostwald ripening. The sphericity of primary particles increased with increasing $V_s$ and decreasing $T_s$ due to enhanced abrasion among the primary particles. The uniformity of primary particle size increased with increasing Vs and $T_s$.

습식분쇄에 의한 입자크기 변화에 따른 분쇄입자의 종횡비 거동 (Aspect Ratio Behavior of Grinding Particles with Variation of Particle Size by Wet Grinding)

  • 최진삼
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.223-230
    • /
    • 2020
  • As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 ㎛ are shifted to submicron size, D50 ~0.6 ㎛ after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.