• Title/Summary/Keyword: Particle Approximation

Search Result 89, Processing Time 0.022 seconds

Modelling the shapes of the largest gravitationally bound objects

  • Rossi, Graziano;Sheth, Ravi K.;Tormen, Giuseppe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • We combine the physics of the ellipsoidal collapse model with the excursion set theory to study the shapes of dark matter halos. In particular, we develop an analytic approximation to the nonlinear evolution that is more accurate than the Zeldovich approximation; we introduce a planar representation of halo axis ratios, which allows a concise and intuitive description of the dynamics of collapsing regions and allows one to relate the final shape of a halo to its initial shape; we provide simple physical explanations for some empirical fitting formulae obtained from numerical studies. Comparison with simulations is challenging, as there is no agreement about how to define a non-spherical gravitationally bound object. Nevertheless, we find that our model matches the conditional minor-to-intermediate axis ratio distribution rather well, although it disagrees with the numerical results in reproducing the minor-to-major axis ratio distribution. In particular, the mass dependence of the minor-to-major axis distribution appears to be the opposite to what is found in many previous numerical studies, where low-mass halos are preferentially more spherical than high-mass halos. In our model, the high-mass halos are predicted to be more spherical, consistent with results based on a more recent and elaborate halo finding algorithm, and with observations of the mass dependence of the shapes of early-type galaxies. We suggest that some of the disagreement with some previous numerical studies may be alleviated if we consider only isolated halos.

  • PDF

Design of Multiplierless 2-D State Space Digital Filters Based on Particle Swarm Optimization (PSO을 이용한 고속 2차원 상태공간 디지털필터 설계)

  • Lee, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.797-804
    • /
    • 2013
  • This paper presents an efficient design method of multiplierless 2-D state space digital filter based on a particle swarm optimization(PSO) algorithm. The design task is reformulated as a constrained minimization problem and is solved by our newly developed PSO algorithm. To ensure the stability of the designed 2-D state space digital filters, a stability strategy is embedded in the basic PSO algorithm. The superiority of the proposed method is demonstrated by several experiments. The results show that the approximation error and roundoff noise of the resultant filters are better than those of the digital filters which designed by recently published filter design methods. In addition, the designed filters with power-of-two coefficients have only about 1/4 computational burden of the 2-D digital filters designed in the 2's complement binary representation.

Population Dose Assessment for Radiation Emergency in Complex Terrain (복잡 지형에서의 주민선량 계산)

  • Yoon, Yea-Chang;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.28-36
    • /
    • 1987
  • Gaussian plume model is used to assess environmental dose for abnormal radioactive release in nuclear facility, but there has a problem to use it for complex terrain. In this report, MATTEW and WIND04 Codes which had been verified were used to calculate wind field in the complex terrain. Under the base of these codes principle, wind fields were obtained from the calculation of the finite difference approximation for advection-diffusion equations which satisfy the mass-conservative law. Particle concentrations and external doses were calculated by using PIC model which approximate the particle to radioactive cloud, and atmospheric diffusion of the particles from the random walk method. The results show that the adjusted wind fields and the distributions of the exposure dose vary with the topography of the complex terrain.

  • PDF

A Flame Study of Soot Deposition and Reentrainment in Application to Control of Diesel Soot Emission (디젤엔진 관련 Soot 부착 및 재유입에 관한 화염에서의 연구)

  • Kim, Seong-Geun;Park, Jong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2626-2636
    • /
    • 1996
  • A study of soot deposition and reentrainment was carried out both theoretically and experimentally to understand behavior of soot formed by incomplete combustion in a diesel engine. Theoretically, soot deposition on engine cylinder wall and/or piston head was studied with a stagnation point flow approximation. Soot reentrainment occurred upon exhaust gas blowdown was also studied by assuming a long-normal shear velocity distribution. Experimentally, a LPG$O_2/N_2$ flame impinging on a disk, produced by a concentric tubular burner, was chosen as deposition configuration and a shear flow unit with compressed air was installed for the study of reentrainment. For selected flame configuration, soot deposition measurements were conducted and showed that the dominant deposition mechanism was thermophoresis. Distributions of gas temperature and soot number density were estimated by combining data obtained by a B-type thermocouple with a thermophoretic transport theory. Disk temperature distributions were directly measured using a K-type thermocouple. Soot size and morphology were estimated from a TEM photograph. Ratios of soot deposit to reentrained amount were measured for a wide range of shear flow velocities, which showed that the reentrainment model was reasonable.

Lagrangian Chaos and Dispersion of Passive Particles on the Ripple Bed (해저 파문에서의 입자의 라그란지적 혼돈 및 확산)

  • 김현민;서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1993
  • The dispersion in the oscillatory flow generated by gravitational waves above the spatially periodic repples is studied. The steady parts of equations describing the orbit of the passive particle in a two dimensional field are assumed to be simply trigonometric functions. From the view point of nonlinear dynamics, the motion of the particle is chaotic under externally time-periodic perturbations which come from the wave motion. Two cases considered here are; (i) shallow water, and (ii) deep water approximation.

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Direct Calculation Method for Excited-state Diffusion-influenced Reversible Reactions with an External Field

  • Reigh, Shang Yik;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1015-1019
    • /
    • 2012
  • The direct calculation method is generalized to the excited-state diffusion-influenced reversible reaction of a neutral and a charged particle under an external field with two different lifetimes and quenching in three dimensions. The present method provides an alternative way to calculate the binding probability density functions and the survival probabilities from the corresponding irreversible results. The solutions are obtained as the series solutions by the diagonal approximation due to the anisotropy of the unidirectional external field. The numerical results are found to be in good agreement with those of the previous study [S. Y. Reigh et al. J. Chem. Phys. 132, 164112 (2010)] within a weak field limit. The solutions of two approaches show qualitatively the same overall behavior including the power laws at long times.

CALCULATION METHODS OF SOLAR ATMOSPHERIC MODEL (태양대기모델 계산법)

  • KIM KAP-SUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.65-71
    • /
    • 2000
  • We have investigated the numerical methods to calculate model atmosphere for the analysis of spectral lines emitted from the sun and stars. Basic equations used in our calculations are radiative transfer, statistical equilibrium and charge-particle conservations. Transfer equation has been solved to get emitting spectral line profile as an initial value problem using Adams-Bashforth-Moulton method with accuracy as high as 12th order. And we have calculated above non linear differential equations simultaneously as a boundary value problem by finite difference method of 3 points approximation through Feautrier elimination scheme. It is found that all computing programs coded by above numerical methods work successfully for our model atmosphere.

  • PDF

Determination of electron energy distribution functions in radio-frequency (RF) and microwave discharges (RF/마이크로웨이브 방전에서의 전자에너지 분포함수의 결정)

  • 고욱희;박인호;김남춘
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.424-430
    • /
    • 2001
  • An electron Boltzmann equation is solved numerically to calculate the electron energy distribution functions in plasma discharge which is generated by radio-frequency (RF) and microwave frequency electric field. The maintenance field strengths are determined self-consistently by solving the homogeneous electron Boltzmann equation in the Lorentz approximation expressed by 2nd order differential equation and an additional particle balance equation expressed by integro-differential equation. By using this numerical code, the electron energy distribution functions in argon discharge are calculated in the range from RF to microwave frequency. The influence of frequency of the HF electric field on the electron energy distribution functions and ionization rate are investigated.

  • PDF

Analysis of Microchannel Flows Using a Model Boltzmann Equation (모델 볼츠만방정식을 이용한 마이크로채널 유동 해석)

  • Chung C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.99-105
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in microchannels. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. The method does not suffer from statistical noise which is common in particle based methods and requires much less amount of computational effort. Calculations are made for flows in simple microchannels and a microfluidic system consisting of two microchannels in series. The method is assessed by comparing the results with those from several different methods and available experimental data.

  • PDF