• 제목/요약/키워드: Particle Acceleration

검색결과 195건 처리시간 0.023초

Nonthermal Radiation from Supernova Remnant Shocks

  • Kang, Hyesung
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.133-140
    • /
    • 2013
  • Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv$\acute{e}$nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and ${\gamma}$-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

Measurement of Fluid Dynamic Characteristics around Stenotic Obstruction in a Circular Channel

  • An, Jin-Hyo;Cheema, T.A.;Jeong, Seong-Ryong;Lee, Choon-Young;Kim, Gyu-Man;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.921-929
    • /
    • 2011
  • We measured experimentally the properties of fluid dynamics, velocity fields, and the pressure, around stenotic obstruction located inside a circular channel structure. Particle image velocimetry system was employed to obtain velocity fields at the central section of the circular channel in the streamwise direction. The stenosis model used was made of acrylic material with different stenotic aspect ratios. The working fluid was water and it was returned by a centrifugal pump system. Pressure measurements were carried out to validate the effect of a narrow passageway. Results showed that the acceleration of gap flow through stenotic obstruction and the pressure drop in the recirculation regime behind the stenosis model can be observed.

래티스볼츠만 다상류 모델의 검토 및 응용 (An Investigation of Lattice Boltzmann Multi-phase Model and it Application)

  • 강호근;안수환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

Setup and Atomic Calibration of Particle Induced X-ray Emission System

  • 송진호;송재봉;존일리야스;김준곤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.206.2-206.2
    • /
    • 2014
  • Recently, particle induced X-ray emission (PIXE) analysis system was installed at the 2MV ion acceleration system in Korea institute science and technology (KIST). This installation is for complement to low atomic resolution of heavy atoms at Rutherford backscattering spectrometry (RBS) system. For quantitative analysis, a mass calibration of the PIXE set-up has been done with thin film standards and. The GUPIX software package has been used to process the PIXE spectra and the results are compared with the values from RBS system. Therefore, the instrumental constant H (solid angle and correction factor) is determined relying completely on the GUPIX data base (cross-sections, fluorescence and Coster-Kronig probabilities, stopping powers and attenuation coefficients) for a large set of elements. These H values can be used in future analysis.

  • PDF

중력이 존재하는 등방성 난류에서 작은 입자의 유동 (Behavior of small particles in isotropic turbulence in the presence of gravity)

  • 조성기;여경민;이창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2396-2400
    • /
    • 2008
  • The motion of small heavy particles in homogeneous isotropic turbulence in the present of gravity is investigated using Direct Numerical Simulations (DNS) at moderate Reynolds number. The Lagrangian velocity and acceleration statistics of particles and of flow for a wide range of Stokes number, defined as the ratio of the particle response time to Kolmogorov time scale of turbulence, were obtained for the direction of the gravity and normal direction, respectively. It is found that particles lose their correction faster than the case without gravity. Then, a significant increase in the average settling velocity was observed for a certain range of Stokes number. Our focus is placed on gravitational effect on very small particles. Our simulations show that as the Stokes number reduces to zero, their mean settling velocity approaches the terminal velocity in still fluid.

  • PDF

Betatron Radiation of an Off-axis Injected Electron in a Laser Wakefield Accelerator

  • Hwang, Seok-Won;Lee, Hae-June
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.86-91
    • /
    • 2009
  • The electrons injected into a laser wakefield undergo betatron oscillation and give rise to the emission of intense X-ray radiation. To investigate the generation conditions of the X-rays, the relativistic motion of an electron injected in an off-axis position has been simulated with wakefield profiles which are pre-calculated with a two-dimensional particle-in-cell code. The wakefield with a plasma density of $1.78{\times}10^{18}\;cm^{-3}$ is generated by the laser with an intensity of $1.37{\times}10^{18}\;W/cm^2$ and a pulse width of 30 fs. From the calculation of the single particle motion, the characteristics of the betatron radiation are investigated in the time domain. As the transverse injection position increases, the power and the duration time of the radiation increase, but the width of each pulse decreases.

Validation of the Aerodynamic drag model in the multi-phase flow analysis

  • Morisaki, Masao;Shimada, Toru;Hanzawa, Masahisa;Kat, Takashi;Yoshikawa, Takashi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.365-368
    • /
    • 2004
  • The multi-phase flow analysis in a solid rocket motor is very important when performing the performance of a motor, and prediction of nozzle ablation. However, only in consideration of regular power, it has analyzed as power which a metal particle receives from a flow until now. We conduct analysis and an experiment about the virtual mass clause which will influence at the place where acceleration is big. We aim at the improvement in accuracy of multi-phase flow analysis from the result.

  • PDF

X-ray properties of PWNe measured with the NuSTAR telescopes

  • An, Hongjun
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.43.1-43.1
    • /
    • 2018
  • Young pulsar wind nebulae, powered by energetic central pulsars, are often observed as bright extended sources in the X-ray band. They are believed to accelerate electrons and positrons to very high energy and can possibly explain the positron excess observed by Fermi and AMS. The electron distribution in these PWNe can be best studied by X-ray satellites because emission in the X-ray band is produced by direct synchrotron radiation of the electrons and positrons. We present NuSTAR studies of PWNe and discuss the implication. Future studies to help further our understanding of particle acceleration will be briefly discussed.

  • PDF

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.