• Title/Summary/Keyword: Partially composite

Search Result 196, Processing Time 0.025 seconds

Estimation of Stress Variations on Time Effects in Prestressed Concrete Composite Girder Bridges (PCS 합성거더교의 시간에 따른 응력 변화 추정)

  • Yoon, Ji-Hoon;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.319-322
    • /
    • 2005
  • When a concrete structure is subjected to load, its response is both immediate and time dependent. Under sustained load, the deformation of a structure gradually increases with time and eventually may be many time greater than its instantanneous value. The gradual development of strain with time is caused by creep and shrinkage. On this study, to estimate of stress variations on time effects in partially prestressed concrete composite girder bridges, computer program applied Age-adjusted Effective Modulus Method(AEMM) in used.

  • PDF

Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates

  • Song, Yuchen;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.143-162
    • /
    • 2019
  • A number of desirable characteristics concerning excellent durability, aesthetics, recyclability, high ductility and fire resistance have made stainless steel a preferred option in engineering practice. However, the relatively high initial cost has greatly restricted the application of stainless steel as a major structural material in general construction. This drawback can be partially overcome by introducing composite stainless steel-concrete structures, which provides a cost-efficient and sustainable solution for future stainless steel construction. This paper presents a preliminary numerical study on stainless steel-concrete composite beam-to-column joints with bolted flush endplates. In order to ensure a consistent corrosion resistance within the whole structural system, all structural steel components were designed with austenitic stainless steel, including beams, columns, endplates, bolts, reinforcing bars and shear connectors. A finite element model was developed using ABAQUS software for composite beam-to-column joints under monotonic and symmetric hogging moments, while validation was performed based on independent test results. A parametric study was subsequently conducted to investigate the effects of several critical factors on the behaviour of composite stainless steel joints. Finally, comparisons were made between the numerical results and the predictions by current design codes regarding the plastic moment capacity and the rotational stiffness of the joints. It was concluded that the present codes of practice generally overestimate the rotational stiffness and underestimate the plastic moment resistance of stainless steel-concrete composite joints.

Recognition of 3D hand gestures using partially tuned composite hidden Markov models

  • Kim, In Cheol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.236-240
    • /
    • 2004
  • Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from decomposition can be remedied by a partial tuning process for such composite HMMs.

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

Development of a Composite Spacecraft Structure for STSAT-3 Satellite Program (소형 복합재 위성 구조체 개발)

  • Cho, Hee-Keun;Seo, Jung-Ki;Kim, Byoung-Jung;Jang, Tae-Seung;Cha, Won-Ho;Lee, Dai-Gil;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.727-736
    • /
    • 2010
  • A satellite that has an all-composite structure, STSAT-3(science and technology satellite), was initially developed in Korea. Partially use of advanced composites in space applications such as solar panel is well developed, however the application of an all-composite satellite bus has never been achieved in Korea. This study emphasizes the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small-class satellite STSAT-3. Moreover its structure design concept is totally different from the one that was used in the previous satellites developed in Korea.

Shear bond strength of indirect composite material to monolithic zirconia

  • Sari, Fatih;Secilmis, Asli;Simsek, Irfan;Ozsevik, Semih
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.267-274
    • /
    • 2016
  • PURPOSE. This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS. Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (${\alpha}$=.05). RESULTS. Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION. Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

An Experimental and analytical study of CFS strengthened Beams (탄소섬유쉬트 보강 보의 실험 및 해석적 연구)

  • Hwang, Jin-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.177-185
    • /
    • 1998
  • This paper deals with the flexural behaviors of R.C beams strengthened by carbon fiber sheets. The behaviors of strengthened beams which were preloaded up to 50%, 60% and 70% of the ultimate load of unstrengthened beam are compared with that of a beam which was not preloaded. The structural behaviors of strengthened beams are compared with analytical method in terms of load-strain of concrete, load-strain of steel bar, load-strain of CFS and falilure load. Four cases of analytical method are investigated according to cracked section or partially cracked section and including strain hardening effect of steel bar or not. Comparing the results of test and analysis, both are similar in terms of load-strain of concrete, and falilure load, the results of analytical method underestimate the failure load. But each results of load-strain of steel bar, load-strain of CFS near at failure is some different, thus near at failure the composite action between CFS and upper concrete is assumed to be disturbed. Consequently, the analytical method was proved to be efficient and accurate in estimating the flexural response of CFS strengthened RC beams.

  • PDF

Determinants and Prediction of the Stock Market during COVID-19: Evidence from Indonesia

  • GOH, Thomas Sumarsan;HENRY, Henry;ALBERT, Albert
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • This research examines the stock market index determinants and the prediction using the FFT curve fitting of the Jakarta Stock Exchange (JKSE) Composite Index during the COVID-19 pandemic. This paper has used daily data of Jakarta Stock Exchange (JKSE) Composite Index, interest rate, and exchange rate from 15 October 2019 to 15 September 2020, and a total of 224 observations, retrieved from Indonesia Stock Exchange (IDX), Indonesia Statistics Central Bureau and Observation & Research of Taxation. The study covers descriptive statistics, multicollinearity test, hypothesis tests, determination test, and prediction using FFT curve fitting. The results unveil four fresh and robust evidence. Partially, the interest rate has affected positively and significantly the stock market index. Partially, the exchange rate has affected negatively and significantly the stock market index. The F-test result, interest rate, and exchange rate have significantly affected the stock market index (JKSE) simultaneously. Furthermore, the FFT curve fitting has predicted that the stock market fluctuates and increases over time. The results have shown a strong influence of the independent variables and the dependent variable. The value of Adjusted R-Square is 0.719, which means that the independent variables have simultaneously impacted the dependent variable for 71.9%; other factors have influenced the remaining 28.1%.

Predicting the Compressive Strength of Thin-walled Composite Structure (복합재 박막 구조물의 압축강도 예측)

  • Kim, Sung Joon;Lee, Donggeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.9-15
    • /
    • 2019
  • The initial buckling of thin walled structures does not result in immediate failure. This post buckling capability is used to achieve light weight design, and final failure of thin walled structure is called crippling. To predict the failure load, empirical methods are often used for thin walled structures in design stage. But empirical method accuracy depend on geometry. In this study, experimental, empirical and numerical study of the crippling behavior of I-section beam made of carbon-epoxy are performed. The progressive failure analysis model to simulate the crippling failure is evaluated using the test results. In this study, commercial software LS-DYNA is utilized to compute the collapse load of composite specimen. Six kinds of specimens were tested in axial compression where correlation between analytical and experimental results has performed. From the results, we have partially conclude that the flange width-to-thickness ratio is found to influence the accuracy of empirical and numerical method.

Monotonic and Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Top-Seat Angle (상·하부 ㄱ형강 반강접 CFT 기둥-보 접합부의 단조 및 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In this paper a systematic numerical analysis is performed to obtain the bending moment resisting capacity of a top and seat angle connection, which is a type of partially restrained connection, for a CFT composite frame subjected to cyclic loading. This partially restrained composite CFT connections are fabricated using high strength steel connection bar. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes. A wide scope of additional structural behaviors explain the different influences of the top and seat angle connection's parameters, such as the different thickness of connection angles and the gage distances of the high strength steel bar. The moment-rotation angle relationships obtained from the finite element analysis are compared with those from Richard's theoretical equation.