• Title/Summary/Keyword: Partial pressure

Search Result 1,422, Processing Time 0.027 seconds

The Effects of Ankle Strengthening Exercise and Toe Taping Walk Training to Lower Body Exercise Function (발목강화운동과 무지테이핑 걷기훈련이 하체운동기능에 미치는 영향)

  • Ji-Su Kang;Jong-Bok Lee;Il-Young Cho;Hyun-Tae Kim;Jong-Hyuck Kim;In-Dong Kim;Jae-Joong Kim;Jeong-Beom Park
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.51-63
    • /
    • 2023
  • This study aimed to verify the effects of a 4-week program of ankle-strengthening exercise and toe-taping walk exercise on the basic lower body strength and walking to examine the benefits of the two exercises. The subjects involved 30 women in their 20s enrolled in university A. The subjects were equally divided into three groups - ankle-strengthening exercise group, toe-taping walk exercise group, and control group. The subjects were instructed to massage and do ankle-strengthening exercises using a towel, massage ball, and CRT, for 60 minutes, 3 times a week. They also taped their hallux valgus using a kinesiology tape and walked for 20 minutes with white tape applied. To sum up, the 4-week ankle-strengthening exercise and toe-taping walk exercise were identified to have a partial statistical significance on the basic lower body strength (muscular strength, power, and balance) and walking (length of gait line, plantar pressure, and COP) of women in their 20s. Therefore, the study confirmed the effects of ankle-strengthening exercises and toe-taping walk exercise on the lower body exercise function, and it is considered that further studies should be conducted on more various effects of the exercises by subdividing them into different pain locations and orthomechanic findings.

Study on the Application of Dry-Ice Blaster for Development of Automatic Stripe-Line Removal (노면표시 제거 장비 개발을 위한 드라이아이스 블래스터 적용에 관한 연구)

  • Koo, Ja Kyung;Moon, Deuk Soo;Bernold, Leonhard E.;Lee, Tai Si
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.245-253
    • /
    • 2009
  • Road facility is the most fundamental infrastructure for traffic and various information for smooth traffic is included in road surfaces. Various information included in road surfaces should be often removed and reinstalled by partial damage and aging. In addition, the existing road surface information should be removed in order to mark new information as traffic information changes. The existing road surface removal method suing grinders and torches had problems such as dangerous working equipment and workers' direct exposure to cars. In addition, although water-jet system using super high-pressure water was used to remove road surface in order of improvement of traditional method, there are another problems such as limitations according to water-tanks and water frost on the road surfaces after work. Therefore, this study analyzes and suggests systems to develop prototype after analyzing dry ice blaster in order to improve the current road surface removal methods. In addition, the study analyzes the possibility of introduction of dry ice blaster through a test for proposing an automatized equipment for new road surface mark removal considering environment and work efficiency, and compare traditional method with introduced dry ice blaster for operating cost.

Development and Case Study of Unmanned Aerial Vehicles (UAVs) for Weather Modification Experiments (기상조절 실험용 드론의 설계·제작과 활용에 관한 연구)

  • Hae-Jung Koo;Miloslav Belorid;Hyun Jun Hwang;Min-Hoo Kim;Bu-Yo Kim;Joo Wan Cha;Yong Hee Lee;Jeongeun Baek;Jae-Won Jung;Seong-Kyu Seo
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.35-53
    • /
    • 2024
  • Under the leadership of the National Institute of Meteorological Sciences (NIMS), the first domestic autonomous flight-type weather modification experimental drone for fog and lower-level cloud seeding was developed in 2021. This drone is designed based on a multi-copter configuration with a maximum takeoff weight of approximately 25 kg, enabling the installation of up to four burning flares for seeding materials and facilitating weather observations (temperature, pressure, humidity, and wind) as well as aerosol (PM10, PM2.5, and PM1.0) particle measurements. This research aims to introduce the construction of the drone and its recent applications over the past two years, providing insights into the experimental procedures, effectiveness verification, and improvement directions of the weather modification drone-based rain enhancement. In particular, partial confirmation of the experimental effects was obtained through the fog dissipation experiment on December 10, 2021, and the lower-level cloud seeding case study on October 5, 2022. To enhance the scope and rainfall amount of weather modification experiments using drones, various technological approaches, including adjustments to experimental altitude, seeding lines, seeding amount, and verification methods are necessary. Through this research, we aim to propose the development direction for weather modification drone technology, which will serve as foundational technology for practical application of domestic rain enhancement technology.

Fabrication of Porous Cu Layers on Cu Pillars through Formation of Brass Layers and Selective Zn Etching, and Cu-to-Cu Flip-chip Bonding (황동층의 형성과 선택적 아연 에칭을 통한 구리 필라 상 다공성 구리층의 제조와 구리-구리 플립칩 접합)

  • Wan-Geun Lee;Kwang-Seong Choi;Yong-Sung Eom;Jong-Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.98-104
    • /
    • 2023
  • The feasibility of an efficient process proposed for Cu-Cu flip-chip bonding was evaluated by forming a porous Cu layer on Cu pillar and conducting thermo-compression sinter-bonding after the infiltration of a reducing agent. The porous Cu layers on Cu pillars were manufactured through a three-step process of Zn plating-heat treatment-Zn selective etching. The average thickness of the formed porous Cu layer was approximately 2.3 ㎛. The flip-chip bonding was accomplished after infiltrating reducing solvent into porous Cu layer and pre-heating, and the layers were finally conducted into sintered joints through thermo-compression. With reduction behavior of Cu oxides and suppression of additional oxidation by the solvent, the porous Cu layer densified to thickness of approximately 1.1 ㎛ during the thermo-compression, and the Cu-Cu flip-chip bonding was eventually completed. As a result, a shear strength of approximately 11.2 MPa could be achieved after the bonding for 5 min under a pressure of 10 MPa at 300 ℃ in air. Because that was a result of partial bonding by only about 50% of the pillars, it was anticipated that a shear strength of 20 MPa or more could easily be obtained if all the pillars were induced to bond through process optimization.

Identification of an effective and safe bolus dose and lockout time for patient-controlled sedation (PCS) using dexmedetomidine in dental treatments: a randomized clinical trial

  • Seung-Hyun Rhee;Young-Seok Kweon;Dong-Ok Won;Seong-Whan Lee;Kwang-Suk Seo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.1
    • /
    • pp.19-35
    • /
    • 2024
  • Background: This study investigated a safe and effective bolus dose and lockout time for patient-controlled sedation (PCS) with dexmedetomidine for dental treatments. The depth of sedation, vital signs, and patient satisfaction were investigated to demonstrate safety. Methods: Thirty patients requiring dental scaling were enrolled and randomly divided into three groups based on bolus doses and lockout times: group 1 (low dose group, bolus dose 0.05 ㎍/kg, 1-minute lockout time), group 2 (middle dose group, 0.1 ㎍/kg, 1-minute), and group 3 (high dose group, 0.2 ㎍/kg, 3-minute) (n = 10 each). ECG, pulse, oxygen saturation, blood pressure, end-tidal CO2, respiratory rate, and bispectral index scores (BIS) were measured and recorded. The study was conducted in two stages: the first involved sedation without dental treatment and the second included sedation with dental scaling. Patients were instructed to press the drug demand button every 10 s, and the process of falling asleep and waking up was repeated 1-5 times. In the second stage, during dental scaling, patients were instructed to press the drug demand button. Loss of responsiveness (LOR) was defined as failure to respond to auditory stimuli six times, determining sleep onset. Patient and dentist satisfaction were assessed before and after experimentation. Results: Thirty patients (22 males) participated in the study. Scaling was performed in 29 patients after excluding one who experienced dizziness during the first stage. The average number of drug administrations until first LOR was significantly lower in group 3 (2.8 times) than groups 1 and 2 (8.0 and 6.5 times, respectively). The time taken to reach the LOR showed no difference between groups. During the second stage, the average time required to reach the LOR during scaling was 583.4 seconds. The effect site concentrations (Ce) was significantly lower in group 1 than groups 2 and 3. In the participant survey on PCS, 8/10 in group 3 reported partial memory loss, whereas 17/20 in groups 1 and 2 recalled the procedure fully or partially. Conclusion: PCS with dexmedetomidine can provide a rapid onset of sedation, safe vital sign management, and minimal side effects, thus facilitating smooth dental sedation.

Dissolved Methane Measurements in Seawater and Sediment Porewater Using Membrane Inlet Mass Spectrometer (MIMS) System (Membrane Inlet Mass Spectrometer (MIMS) 시스템을 이용한 해수 및 퇴적물 공극수내 용존 메탄의 측정)

  • An, Soon-Mo;Kwon, Ji-Nam;Lim, Jea-Hyun;Park, Yun-Jung;Kang, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2007
  • Membrane inlet mass spectrometer (MIMS) has been used to accurately quantify dissolved gases in liquid samples. In this study, the MIMS system was applied to measure dissolved methane in seawater and sediment porewater. To evaluate the accuracy of the measurement, liquid samples saturated with different methane partial pressure were prepared and the methane concentrations were quantified with the MIMS system. The measured values correspond well with the expected values calculated from solubility constants. The standard error of the measurements were $0.13{\sim}0.9%$ of the mean values. The distribution of dissolved methane concentration in seawater of the South Sea of Korea revealed that the physical parameters primarily control the methane concentration in sea water. The MIMS system was effective to resolve the small dissolved methane difference among water masses. The probe type inlet in MIMS system was proven to be effective to measure porewater methane concentration.

Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System (산소 전극 시스템에 사용되는 polysulfone막에 대한 연구)

  • Hong, Suk In;Kim, Hyun Joon;Park, Hee Young;Kim, Tae Jin;Jeong, Yong Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.877-887
    • /
    • 1996
  • The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

  • PDF

Successful 20 hours Canine Allograft Preservation with new Solution Containing Triiodothyronine - Development of new lung preservation solution II - (삼요드티로닌을 포함한 폐보존액을 이용한 20시간 폐보존 - 새로운 폐 보존액의 개발 II -)

  • 성숙환;김영태;김주현
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.413-421
    • /
    • 1999
  • Background: Ischemia reperfusion injury is known to contribute to the major causes of the early graft failure in lung transplantation. Triiodothyronine (T3) has been suggested to ameliorate ischemia reperfusion injury from both in vivo and in vitro experiments of various organs. Prospecting its beneficial effect for pulmonary allograft preservation, we made a new solution by adding T3 into the extracellular type dextran solution. Material and Method: Twelve adult mongrel dogs underwent left lung allotransplantation. Six donor dogs were flushed with the new solution(Group 1, n=6), and the remaining six were flushed with Euro-Collins solution to serve as controls(Group 2, n=6). Allografts were stored in each preservation solution for 20 hours at 4$^{\circ}C$. Left single lung transplantations were performed. The right pulmonary artery and the right main bronchus were clamped at 15 minutes after the reperfusion and maintained throughout the experiment to evaluate the transplanted left lung function. Result: Arterial carbon dioxide tension was better in group 1 than in group 2 throughout the experiment period and the difference was statistically significant at 2 hours after reperfusion(28.0${\pm}$3.0 mmHg and 53.1${\pm}$17.4 mmHg, p<0.05). The differences of arterial oxygen partial pressure, peak airway pressure and pulmonary vascular resistance showed no statistical significance. The malondialdehyde(MDA) level, measured from tissue obtained at 120 minutes after reperfusion showed no statistically significant difference. The tissue wet/dry ratio of group 1(649${\pm}$27 %) was significantly lower than that of group 2(686${\pm}$71 %, p<0.05). The microscopic examination revealed varying degrees of injury represented mainly by findings such as perivascular neutrophil infiltration, capillary hemorrhage and interstitial congestion. These findings were less severe in group 1 than those in group 2. Conclusion: The new solution demonstrated superior allograft preservation after 20 hour ischemia compared to Euro-Collins solution in canine single left lung transplantation model, these results suggest that T3 might be a promising agent for pulmonary allograft preservation.

  • PDF

Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions (산성용액에서 이산화탄소의 압력이 광물탄산화에 미치는 영향)

  • Ryu, Kyoung Won;Hong, Seok Jin;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.