DOI QR코드

DOI QR Code

Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions

산성용액에서 이산화탄소의 압력이 광물탄산화에 미치는 영향

  • Ryu, Kyoung Won (Korea University of Technology and Education) ;
  • Hong, Seok Jin (Department of Earth and Environmental Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Choi, Sang Hoon (Department of Earth and Environmental Sciences, College of Natural Sciences, Chungbuk National University)
  • Received : 2019.12.24
  • Accepted : 2020.02.01
  • Published : 2020.02.28

Abstract

Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.

이산화탄소 고정화 및 탄산화 반응에는 칼슘(Ca)과 마그네슘(Mg)과 같은 알칼리토류 금속을 함유하고 있는 사문석(serpentine, Mg3Si2O5(OH)4) 규회석(wollastonite, CaSiO3), 감람석(olivine, Mg2SiO4)과 같은 칼슘/마그네슘 실리케이트 광물(Ca/Mg-silicate mineral)들이 주로 이용되어 왔다. 특히 사문석은 탄산화가 가능한 자연물질 중 자연계 내에 풍부한 매장량을 갖고 있으며, 우수한 반응성 때문에 광물탄산화에 가장 적절한 출발물질로 인식되어 있다. 따라서 본 연구는 사문석을 출발물질로 사용하여 산성 용액 내에서 이산화탄소의 압력이 탄산화 효율에 미치는 영향력을 확인하고자 하였다. 탄산화 실험 조건은 황산용액 0.3~1 M, 반응온도 100℃ 및 150℃ 그리고 이산화탄소의 부분압력 0~3 MPa이며, 탄산화법은 수정된 직접탄산화법(modified direct method)으로 실시하였다. 또한 탄산화 효율을 높이고자 liquid pump로 NaOH 용액을 주입하여 pH를 13으로 조절하였다. 탄산화율은 황산의 농도 및 반응온도에 비례하여 증가하였으며, 3 MPa의 이화탄소를 주입한 조건에서의 탄산화율이 이산화탄소를 첨가하지 않은 조건의 탄산화율보다 높았다. 반응결과 황산용액 1 M과 이산화탄소 부분압 3 MPa, 반응온도 150℃에서 용출 및 탄산화 실험 후 약 85%의 상당히 높은 탄산화율이 분석되었다. 따라서 산성용액에서 이산화탄소의 압력이 사문석 내의 Mg 용출에 영향을 미치는 것으로 확인되었다. Mg의 용해속도는 Si의 용해속도보다 높아 반응 후 사문석의 Mg : Si의 비가 약 1.5에서 0.1미만으로 급속하게 감소하여, 사문석의 구조 내에 불완전한 Si 사면체 층 골격구조(Mg-depleted skeletal phase)가 분석되었다.

Keywords

References

  1. Alexander, G., Maroto-Valer, M.M. & Gafarova-Aksoy, P. (2007) Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel, v.86, p.273-281. https://doi.org/10.1016/j.fuel.2006.04.034
  2. Baek, J., Jo. Y., Lee, J., Kwon, N., Kim, Y., Choi, S., Kim, S. and Roh, Y. (2016) Silica and Iron oxide recovery and mineral carbonation from serpentine minerals using acid dissolution and pH swing processes, The Korean Society of Economic Environmental Geology, v.49, p.13-22. https://doi.org/10.9719/EEG.2016.49.1.13
  3. Bearat, H., McKelvy, M.J., Chizmeshya, A.V.G., Gormley, D., Nunez, R., Carpenter, R.W., Squires, K. & Wolf, G.H. (2006) Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. Environmental Science & Technology, v.40, p.4802-4808. https://doi.org/10.1021/es0523340
  4. Berg, A. & Banwart, S.A. (2000) Carbon dioxide mediated dissolution of ca-feldspar: Implications for silicate weathering. Chemical Geology, v.163, p.25-42. https://doi.org/10.1016/S0009-2541(99)00132-1
  5. Blencoe, J.G., Palmer, D.A., Anovitz, L.M. & Beard, J.S. (2012) Carbonation of metal silicates for long-term $CO_2$ sequestration. Pp.,Google Patents.
  6. Carroll, S.A. & Knauss, K.G. (2005) Dependence of labradorite dissolution kinetics on co2(aq), al(aq), and temperature. Chemical Geology, v.217, p.213-225. https://doi.org/10.1016/j.chemgeo.2004.12.008
  7. Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffe, B. & Guyot, F. (2009a) Carbonation of ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling. Chemical Geology, v.265, p.63-78. https://doi.org/10.1016/j.chemgeo.2009.01.022
  8. Daval, D., Martinez, I., Guigner, J.M., Hellmann, R., Corvisier, J., Findling, N., Dominici, C., Goffe, B. & Guyot, F. (2009b) Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations. American Mineralogist, v.94, p.1707-1726. https://doi.org/10.2138/am.2009.3294
  9. Daval, D., Sissmann, O., Menguy, N., Saldi, G.D., Guyot, F., Martinez, I., Corvisier, J., Garcia, B., Machouk, I., Knauss, K.G. & Hellmann, R. (2011) Influence of amorphous silica layer formation on the dissolution rate of olivine at $90^{\circ}C$ and elevated pco2. Chemical Geology, v.284, p.193-209. https://doi.org/10.1016/j.chemgeo.2011.02.021
  10. Gerdemann, S.J., O'Connor, W.K., Dahlin, D.C., Penner, L.R. & Rush, H. (2007) Ex situ aqueous mineral carbonation. Environmental Science & Technology, v.41, p.2587-2593. https://doi.org/10.1021/es0619253
  11. Golubev, S.V., Pokrovsky, O.S. & Schott, J. (2005) Experimental determination of the effect of dissolved co2 on the dissolution kinetics of mg and ca silicates at $25^{\circ}C$. Chemical Geology, v.217, p.227-238. https://doi.org/10.1016/j.chemgeo.2004.12.011
  12. Hanchen, M., Prigiobbe, V., Storti, G., Seward, T.M. & Mazzotti, M. (2006) Dissolution kinetics of fosteritic olivine at $90-150^{\circ}C$ including effects of the presence of $co_2$. Geochimica et Cosmochimica Acta, v.70, p.4403-4416. https://doi.org/10.1016/j.gca.2006.06.1560
  13. Hellmann, R. (1995) The albite-water system: Part ii. The time-evolution of the stoichiometry of dissolution as a function of ph at 100, 200, and $300^{\circ}C$. Geochimica et Cosmochimica Acta, v.59, p.1669-1697. https://doi.org/10.1016/0016-7037(95)00075-B
  14. IPCC. (2005) Carbon dioxide capture and storage. Pp., Cambridge University Press, Cambridge, United Kingdom and New York (NY), USA, Intergoverment panel on climate change.
  15. Jarvis, K., Carpenter, R.W., Windman, T., Kim, Y., Nunez, R. & Alawneh, F. (2009) Reaction mechanisms for enhancing mineral sequestration of co2. Environmental Science & Technology, v.43, p.6314-6319. https://doi.org/10.1021/es8033507
  16. Jonckbloedt, R.C.L. (1998) Olivine dissolution in sulphuric acid at elevated temperatures - implications for the olivine process, an alternative waste acid neutralizing process. Journal of Geochemical Exploration, v.62, p.337-346. https://doi.org/10.1016/S0375-6742(98)00002-8
  17. Kakizawa, M., Yamasaki, A. & Yanagisawa, Y. (2001) A new $co_2$ disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy, v.26, p.341-354. https://doi.org/10.1016/S0360-5442(01)00005-6
  18. Knaapen, A.M., Borm, P.J.A., Albrecht, C. & Schins, R.P.F. (2004) Inhaled particles and lung cancer. Part a: Mechanisms. International Journal of Cancer, v.109, p.799-809. https://doi.org/10.1002/ijc.11708
  19. Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K. & Yamada, K. (2008) Development of a new ph-swing $co_2$ mineralization process with a recyclable reaction solution. Energy, v.33, p.776-784. https://doi.org/10.1016/j.energy.2008.01.005
  20. Kosuge, K., Shimada, K. & Tsunashima, A. (1995) Micropore formation by acid treatment of antigorite. Chemistry of Materials, v.7, p.2241-2246. https://doi.org/10.1021/cm00060a009
  21. Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, B.L. & Sharp, D.H. (1995) Carbon dioxide disposal in carbonate minerals. Energy, v.20, p.1153-1170. https://doi.org/10.1016/0360-5442(95)00071-N
  22. Maroto-Valer, M.M., Fauth, D.J., Kuchta, M.E., Zhang, Y. & Andresen, J.M. (2005) Activation of magnesium rich minerals as carbonation feedstock materials for $co_2$ sequestration. Fuel Processing Technology, v.86, p.1627-1645. https://doi.org/10.1016/j.fuproc.2005.01.017
  23. McKelvy, M.J., Chizmeshya, A.V.G., Diefenbacher, J., Bearat, H. & Wolf, G. (2004) Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. Environmental Science & Technology, v.38, p.6897-6903. https://doi.org/10.1021/es049473m
  24. Mossman, B.T. (1993) Health effects of mineral dusts. Pp. 513. Mineralogical Society of America,, Washington, DC.
  25. O'Connor, W.K., Dahlin, D.C., Rush, G.E., Dahlin, C.L. & Collins, W.K. (2002) Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products. Minerals and Metallurgical Processing, v.19, p.95-101.
  26. O'Connor, W.K., Dahlin, D.C., Rush, G.E., Gerdemann, S.J., Penner, L.R. & Nilsen, D.N. (2005) Auqeous mineral carbonation - mineral availability, pretreatment, reaction parametrics, and process studies Pp.,US DOE, National Energy Technology Laboratory
  27. Park, A.H.A. & Fan, L.S. (2004) Co2 mineral sequestration: Physically activated dissolution of serpentine and ph swing process. Chemical Engineering Science, v.59, p.5241-5247. https://doi.org/10.1016/j.ces.2004.09.008
  28. Park, A.H.A., Jadhav, R. & Fan, L.S. (2003) $Co_2$ mineral sequestration: Chemically enhanced aqueous carbonation of serpentine. Canadian Journal of Chemical Engineering, v.81, p.885-890. https://doi.org/10.1002/cjce.5450810373
  29. Pokrovsky, O.S. & Schott, J. (2000) Forsterite surface composition in aqueous solutions: A combined potentiometric, electrokinetic, and spectroscopic approach. Geochimica et Cosmochimica Acta, v.64, p.3299-3312. https://doi.org/10.1016/S0016-7037(00)00435-X
  30. Prigiobbe, V., Costa, G., Baciocchi, R., Hanchen, M. & Mazzotti, M. (2009) The effect of co2 and salinity on olivine dissolution kinetics at 120 {ring operator} c. Chemical Engineering Science, v.64, p.3510-3515. https://doi.org/10.1016/j.ces.2009.04.035
  31. Ryu K.W and Choi, S.H. (2017) The Mineral carbonation using steelmaking reduction slag, The Korean Society of Economic Environmental Geology, v.50, p27-34. https://doi.org/10.9719/EEG.2017.50.1.27
  32. Ryu, K.W., Jo, H., Choi, S.H., Chae, S.C. & Jang, Y.-N. (2016) Changes in mineral assemblages during serpentine carbonation. Applied Clay Science, v.134, p.62-67. https://doi.org/10.1016/j.clay.2016.08.005
  33. Sanna, A., Wang, X., Lacinska, A., Styles, M., Paulson, T. & Maroto-Valer, M.M. (2013) Enhancing mg extraction from lizardite-rich serpentine for co2 mineral sequestration. Minerals Engineering, v.49, p.135-144. https://doi.org/10.1016/j.mineng.2013.05.018
  34. Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C.J. & Zevenhoven, R. (2007) Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing, v.83, p.36-46. https://doi.org/10.1016/j.minpro.2007.04.001
  35. Wagner, J.C., Berry, G. & Pooley, F.D. (1980) Carcinogenesis and mineral fibres. British Medical Bulletin, v.36, p.53-56. https://doi.org/10.1093/oxfordjournals.bmb.a071614
  36. Wang, X. & Maroto-Valer, M.M. (2011) Dissolution of serpentine using recyclable ammonium salts for $CO_2$ mineral carbonation. Fuel,v. 90, p.1229-1237. https://doi.org/10.1016/j.fuel.2010.10.040