Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System

산소 전극 시스템에 사용되는 polysulfone막에 대한 연구

  • Received : 1996.03.28
  • Accepted : 1996.07.16
  • Published : 1996.10.10

Abstract

The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

산소 전극 시스템에 사용되는 합성막은 산소에 대해 선택적인 투과를 해야 하며, 화학적으로 불활성이고 또한 우수한 기계적 강도를 가져야 한다. 본 실험에서는 산소 전극에 적합한 막 제조에 목표를 두고, 열적 안정성과 기계적 강도가 우수한 polysulfone을 막 재료로 선택하였다. 막 제조시 용매로서 THF, NMP 그리고 methylene chrolide를 사용하여, 용매에 따른 막의 특성 변화를 조사하였다. PSf막을 통한 산소와 질소의 투과도 계수는 각각 가압법과 전기화학적 방법으로 측정하였으며, 가압법에 의해 측정한 산소의 투과도 계수가 약 20% 큰 값을 나타내었다. 가압법에 의한 투과 실험 결과, 공급부의 압력이 증가함에 따라 산소와 질소의 투과도 계수는 약간 감소하였으며, 이러한 거동은 유리상 고분자막을 통한 기체의 투과에서 일반적으로 나타난다. 한편 용매로서 methylene chrolide를 사용한 PSf막의 고분자 함량을 변화시켜 실험한 결과, 큰 차이를 나타내지 않았다. 산소 전극에의 PSf막의 밀착 문제를 완화하고자 막의 유연성을 향상시키기 위해 가소제로서 TCP를 첨가하여 막을 제조 하였으며, 가소제를 소량 첨가했을 때, 투과 특성에는 큰 영향을 미치지 않고, 막의 유연성이 증가됨을 알 수 있었다. 본 실험에서 제조한 PSf막의 산소 전극에의 사용 가능성을 조사하기 위해 PSf막을 산소 전극에 설치하여 실험하였다. -0.3~-1.0V에서 전류의 변화가 plateu를 나타내었으며, 산소 분압과 전류의 상관계수가 0.99949로서 PSf막을 산소전극에 적절하게 사용할 수 있으리라 생각된다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Ind. Eng. Chem. Fundam. v.7 S. Aiba;M. Ohashi;S. Y. Huang
  2. Chem. Eng. Sci. v.24 S. Aiba;S. Y. Huang
  3. Acta Physiol. Pharmacol. Neerl. v.14 A. Berkenbosch
  4. J. Membrane Sci. v.4 M. F. Refojo;F. L. Leong
  5. J. Membrane Sci. v.70 L. Nicodemo;A. Marcone;T. Monetta;G. Mensitieri;F. Bellucci
  6. Trans. Am. Soc. Artif. Intern. Organs. v.2 L. C. Clark
  7. Korean. J. Biotechnol. Bioeng. v.4 T. J. Kim
  8. Trends in Biochem. Sci. v.9 M. Gronow
  9. Comprehensibe Biotechnology v.4 L. Danielsson
  10. J. Appl. Biochemistry v.6 M. A. Krysteva;S. R. Blagov
  11. Measurement of Oxygen by Membrane-Covered probes V. Linek;V. Vacek;J. Sinkule
  12. Biotechnol. Bioeng. v.9 J. D. Borkowski;M. J. Johnson
  13. Sep. Sci. Tech. v.15 J. M. S Henis;M. K. Tripodi
  14. J. Qppl. Polym. Sci. v.20 A. Noshay
  15. J. Polym Sci. Polym. Chem. Edn, v.17 D. W. Brown;R. E. Rowry
  16. J. Polym. Sci. Polym. Chem. Cen. v.22 B. C. Johnson;C. Trans
  17. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. v.12 P. J. Chuldzinski;A. P. fickett
  18. U. S. Patent 4,797,457 M. D. Guiver;J. W. Apsimon;O. Kutowy
  19. J. Polym. Sci. v.50 A. S. Michaels;H. J. Bixler
  20. The mathematics of difusion J. Crank
  21. J. Polym. Sci: Part B: Polym. Phys. v.25 Y. Maeda;D. R. Paul
  22. J. Coll. Sci. v.20 W. R. Vieth;K. J. Sladek
  23. J. Polym. Sci: Part B: Polym. Phys. v.14 D. R. Paul;W. J. Koros
  24. Polymer v.32 J. C. Mchattie;W. J. Koros;D. R. Paul
  25. Polymer v.32 J. C. Mchattie;W. J. Koros;D. R. Paul
  26. Proceedings of the third Asia-Pacific Biochemical Engineering Conference S. S. Choong;W. Y. Wayne;W. Y. Law;W. K. Teo