• Title/Summary/Keyword: Partial load

Search Result 555, Processing Time 0.026 seconds

Design and Evaluation of DRM Model with Strong Security Based on Smart Card (스마트카드 기반의 강한 보안을 갖는 DRM 모델의 설계 및 평가)

  • Park, Jong-Yong;Kim, Young-Hak;Choe, Tae-Young
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • Recently, digital rights management (DRM) related researches are widely spreading with prosperity of IT industries. The DRM technology protects proprietor of copyright by preventing mischanneling and illegal copy. In this paper, we propose a new DRM model that has an enhanced and efficient protocol based on certificate using smart card. The proposed model overcomes weaknesses of WCDRM model and has following additional advantages: first, copy protection is enhanced by hiding user's specific information from attacker by storing the information within smart card; second, server load for contents encryption is reduced by making clear protocols among author, distributer, certificate authority, and users; third, offline user authentication is guaranteed by combining partial secret values in media players and smart card. Exposure of core information also is minimized by storing them in smart card. In addition, we show that the proposed system is more secure than WCDRM model by comparing various factors of anonymous attackers.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Characteristics of Soil Stress using Expansion Liquid Sheet (팽창약액시트를 이용한 지중응력 특성에 관한 연구)

  • Kang, Hyounhoi;Kim, Juho;Chung, Yoonseok;Park, Jeongjun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In this study, to investigate the strength enhancement and stress transfer effect of the inflatable chemicals used in the recovery of soft ground or partial settlement, the dilatant solution was prepared and classified by measuring the density and the earth pressure in the sand ground. The inflation reinforcing agent was prepared by injecting into a separate impervious vacuum sheet by dividing into a relatively high expansion group and a low expansion group, and a cementation experiment was performed in the lower part of the homogeneously formed model ground. As a result, reinforcing effect was shown up to about 15cm above the expansion reinforcement, and the soil pressure showed a compaction tendency similar to the concentrated load of $1.150{\sim}11.298t/m^2$.

A case report on telescopic denture with a small number of residual teeth in mandible (하악 소수 잔존치에서 텔레스코픽 의치를 이용한 수복 증례)

  • Oh, Sang-Min;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.46-50
    • /
    • 2015
  • Restoration of a patient with thin and low residual ridges using a removable partial denture cannot provide proper anterioposterior stability and support, so it results in patient discomfort and severe occlusal force. Also, when a small number of residual teeth are far apart from one another, it is difficult to splint. When these teeth are not splinted, they become solitary abutments, which is not a wise treatment decision. In this case, telescopic system reduces severe lateral load on abutments resulting from a clasp denture and it provides stable and definite retention and solidity. In this case report, a patient exhibited full edentulism in maxilla, and a small number of residual teeth in mandible, which were restored with a complete denture and a telescopic denture respectively. In treatment planning, it was concluded that a patient was restored with a telescopic denture since it was highly probable that a clasp denture would create discomfort and difficulty due to a small number of residual teeth located far apart and residual ridges without proper support.

Creep and Oxidation Behaviors of Alloy 617 in High Temperature Helium Environments with Various Oxygen Concentrations (산소 농도에 따른 Alloy 617의 고온헬륨환경에서의 크립 및 산화거동)

  • Koo, Jahyun;Kim, Daejong;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Wrought nickel-base superalloys are being considered as the structural materials in very-high temperature gas-cooled reactors. To understand the effects of impurities, especially oxygen, in helium coolant on the mechanical properties of Alloy 617, creep tests were performed in high temperature flowing He environments with varying $O_2$ contents at 800, 900, and $1000^{\circ}C$. Also, creep life in static He was measured to simulate the pseudo-inert environment. Creep life was the longest in static He, while the shortest in flowing helium. In static He, impurities like $O_2$ and moisture were quickly consumed by oxidation in the early stage of creep test, which prevented further oxidation during creep test. Without oxidation, microstructural change detrimental to creep such as decarburization and internal oxidation were prevented, which resulted in longer creep life. On the other hand, in flowing He environment, surface oxides were not stable enough to act as diffusion barriers for oxidation. Therefore, extensive decarburization and internal oxidation under tensile load contributed to premature failure resulting in short creep life. Limited test in flowing He+200ppm $O_2$ resulted in even shorter creep life. The oxidation samples showed extensive spallation which resulted in severe decarburization and internal oxidation in those environments. Further test and analysis are underway to clarify the relationship between oxidation and creep resistance.

A TWO DIMENSIONAL STRESS ANALYSIS OF FIXED PROSTHESIS WITH OSSEOINTEGRATED IMPLANT AS AN INTERMEDIATE ABUTMENT (골유착성 임플란트를 중간 지대치로 사용한 고정성 보철물의 응력분석)

  • Park Sang-Soo;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.611-624
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution of the natural teeth, the implant, the prosthesis and the supporting tissue according to the types of implant and connection modality in the five-unit fixed partial denture with a implant pier abutment. A Two dimensional stress analysis model was constructed to represent a mandible missing the first and second premolars and first molar. The model contained a canine and second molar as abutment teeth and implant pier abutments with and without stress-absorbing element. Finite element models were created and analyzed using software ANSYS 4.4A for IBM 32bit personal computer. The results obtained were as follows. 1. Implant group, compared to the natural teeth group, showed a maximum principal stress at the superior portion of implants and a stress concentration at :he neck and end portion. 2. Maximum principal stress and maximum Von Mises stress were always lower in the case of rigid connection than nonrigid connection. 3. A cylinder type implant with stress absorbing element and screw type implant were generally similar in the stress distribution pattern. 4. A screw type implant, compared to the cylinder type implant, showed a relatively higher stress concentration at both neck and end portion of it. 5. Load B cases showed higher stress concentration on the posterior abutments in the case of nonrigid connector than rigid connector. 6. A maximum displacement was always lower in the case of rigid connection than nonrigid connection. These results suggest that osseointegrated implant can be used as an intermediate abutment.

  • PDF

Three dimensional stress analysis of implant-supported prosthesis with various misfit (적합도가 다른 임플랜트 지지 보철물의 삼차원적 응력 분석)

  • Yang, Hong-So;Chung, Hyun-Ju;Park, Yeong-Joon;Park, Sang-Won;Kunavisarut, Chatchai
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2001
  • To evaluate the effect of misfit in two implant-supported fixed partial dentures in the posterior of the mandible, variations of the standard finite element models were made by changing the location of the gap as follows: 1) no gap present; 2) located between the gold cylinder and the abutment on the distal implant; 3) gap located between the gold cylinder and the abutment on the mesial implant. The results of this study were as follows: 1. When the location of the gap was close to the load applied on the prosthesis, the stress in the prosthesis, implant components and surrounding bone increased. 2. The presence of cantilever increased the stress in the prosthesis, implant and surrounding bone significantly, regardless of the presence of the gap. 3. When there was a gap between the prosthesis and abutment, the stress in the bone around the implant increased. 4. When passive fit was achieved, the stress was distributed widely in each component with less peak stress in each component. 5. The inner structures of the implant components, the gold screw and the abutment screw bear more stress when the prosthesis did not exhibit passive fit with the abutments than when passive fit was present.

  • PDF

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine (직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향)

  • Park, Cheolwoong;Kim, Taeyoung;Cho, Seehyoen;Oh, Seungmook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In order to meet the enforced emission regulations and reduce fuel consumption, various new technologies are employed in engines. The problem of NOx emissions under a lean mixture condition should be solved, because a lean-burn direct-injection engine can realize stable lean combustion with a stratified mixture, which results in improvements in fuel economy and emissions. This study investigated the effects of intake and exhaust valve timing changes on the performance and emission characteristics of a lean-burn LPG direct-injection engine. Under a partial-load operating condition without throttling, an increase in the intake valve opening led to an increase in NOx emissions due to an increase in the amount of excess air. The fuel consumption deteriorated with an increase in the exhaust valve opening due to a decrease in the expansion work and an increase in the pumping loss.

A Study on the Structural Integrity Considering the Installation of a Micro-tube Heat Exchanger (미세튜브 열교환기의 장착을 고려한 구조건전성에 관한 연구)

  • Oh, Se Yun;Kim, Tae Jin;Cho, Jong Rae;Jeong, Ho Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.447-451
    • /
    • 2015
  • The objective of this study is to predict the structural characteristics of a heat exchanger mounted on an aircraft engine using finite element analysis. The plastic fracture and life of the heat exchanger were estimated by a thermo-mechanical analysis. Tensile tests were conducted under high temperature conditions (700, 800, 900, 1000 K) using five specimens to obtain the mechanical properties of the Inconel 625 tubes. To assess the structural characteristics of the heat exchanger, the full and partial models were applied under the operating conditions given by the thermo-mechanical and inertial load. As a result, the case, tubesheet, flange, and mounting components have a reasonable safety margin to the allowable stress assuming a fatigue strength of Inconel 625 of 10000 cycles under 1000 K.