• Title/Summary/Keyword: Partial isometry

Search Result 6, Processing Time 0.022 seconds

DISCUSSIONS ON PARTIAL ISOMETRIES IN BANACH SPACES AND BANACH ALGEBRAS

  • Alahmari, Abdulla;Mabrouk, Mohamed;Taoudi, Mohamed Aziz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • The aim of this paper is twofold. Firstly, we introduce the concept of semi-partial isometry in a Banach algebra and carry out a comparison and a classification study for this concept. In particular, we show that in the context of $C^*$-algebras this concept coincides with the notion of partial isometry. Our results encompass several earlier ones concerning partial isometries in Hilbert spaces, Banach spaces and $C^*$-algebras. Finally, we study the notion of (m, p)-semi partial isometries.

Generalized Inverses and Solutions to Equations in Rings with Involution

  • Yue Sui;Junchao Wei
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, we focus on partial isometry elements and strongly EP elements on a ring. We construct characterizing equations such that an element which is both group invertible and MP-invertible, is a partial isometry element, or is strongly EP, exactly when these equations have a solution in a given set. In particular, an element a ∈ R# ∩ R is a partial isometry element if and only if the equation x = x(a)*a has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. An element a ∈ R#∩R is a strongly EP element if and only if the equation (a)*xa = xaa has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. These characterizations extend many well-known results.

WEAK NORMAL PROPERTIES OF PARTIAL ISOMETRIES

  • Liu, Ting;Men, Yanying;Zhu, Sen
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1489-1502
    • /
    • 2019
  • This paper describes when a partial isometry satisfies several weak normal properties. Topics treated include quasi-normality, subnormality, hyponormality, p-hyponormality (p > 0), w-hyponormality, paranormality, normaloidity, spectraloidity, the von Neumann property and Weyl's theorem.

ON HEINZ-KATO-FURUTA INEQUALITY WITH BEST BOUNDS

  • Lin, C.S.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.93-101
    • /
    • 2008
  • In this article we shall characterize the Heinz-Kato-Furuta inequality in several ways, and the best bound for sharpening of the inequality is obtained by the method in [7].

  • PDF

H-TOEPLITZ OPERATORS ON THE BERGMAN SPACE

  • Gupta, Anuradha;Singh, Shivam Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.327-347
    • /
    • 2021
  • As an extension to the study of Toeplitz operators on the Bergman space, the notion of H-Toeplitz operators B�� is introduced and studied. Necessary and sufficient conditions under which H-Toeplitz operators become co-isometry and partial isometry are obtained. Some of the invariant subspaces and kernels of H-Toeplitz operators are studied. We have obtained the conditions for the compactness and Fredholmness for H-Toeplitz operators. In particular, it has been shown that a non-zero H-Toeplitz operator can not be a Fredholm operator on the Bergman space. Moreover, we have also discussed the necessary and sufficient conditions for commutativity of H-Toeplitz operators.

THE COMPOSITION SERIES OF IDEALS OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT BY SEMIGROUP OF ENDOMORPHISMS

  • ADJI, SRIWULAN;ZAHMATKESH, SAEID
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.869-889
    • /
    • 2015
  • Let ${\Gamma}^+$ be the positive cone in a totally ordered abelian group ${\Gamma}$, and ${\alpha}$ an action of ${\Gamma}^+$ by extendible endomorphisms of a $C^*$-algebra A. Suppose I is an extendible ${\alpha}$-invariant ideal of A. We prove that the partial-isometric crossed product $\mathcal{I}:=I{\times}^{piso}_{\alpha}{\Gamma}^+$ embeds naturally as an ideal of $A{\times}^{piso}_{\alpha}{\Gamma}^+$, such that the quotient is the partial-isometric crossed product of the quotient algebra. We claim that this ideal $\mathcal{I}$ together with the kernel of a natural homomorphism $\phi:A{\times}^{piso}_{\alpha}{\Gamma}^+{\rightarrow}A{\times}^{iso}_{\alpha}{\Gamma}^+$ gives a composition series of ideals of $A{\times}^{piso}_{\alpha}{\Gamma}^+$ studied by Lindiarni and Raeburn.