• Title/Summary/Keyword: Pareto-optimal

검색결과 240건 처리시간 0.025초

최소 거리척도를 이용한 대화형 다기준 그룹 의사결정 (An Interactive Multi-criteria Group Decision Making with the Minimum Distance Measure)

  • 조남웅;김재희;김승권
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.42-50
    • /
    • 2006
  • The multi-criteria group decision making (MCGDM) problem is to determine the best compromise solution in a set of competing alternatives that are evaluated under conflicting criteria by decision maker (DM)s. In this paper, we propose a mixed-integer programming (MIP) model to solve MCGDM. The existing method based on minimizing a distance measure such as Median Approach can not guarantee the best compromise solution because the element of median point vector is defined with respect to each criteria separately. However, by considering all criteria simultaneously, we generate median point that is better for locating the best compromise solution. We also utilize the concept of spatial dispersion index (SDI) to produce a threshold value, which is used as a guideline to choose either the Utopian Approach or the Median Approach. And we suggest using CBITP (Convex hull of individual maxima Based Interactive Tchebycheff Procedure) to provide DMs with various Pareto-optimal solutions so that DMs have broad range of selection.

국가경영을 통한 관료제 개혁에 관한 연구 (A study on reform of public bureaucracy through governance)

  • 최락인
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.211-218
    • /
    • 2004
  • 베버가 관료제 모형을 최초로 제시했을 때 관료제의 효율성은 실로 엄청난 것이었다. 그러나 정부 및 관료조직은 이제 변화의 중심에 서 있다고 할 수 있다. 본 연구의 목적은 거버넌스(governance)에 대한 절대적인 비전 선택을 강요하지는 않는다. 보다 더 분명하게 정부에 대한 유용한 선택을 하고자 하는 것이다. 정부나 행정에 대한 어떠한 패러다임의 선택도 파레토의 최적의 상태를 가져다주지는 못한다. 그러나 우리가 거버넌스에 대한 판단을 할 때 무엇을 채택하고 무엇을 희생해야 하는 지를 명백하게 해준다. 오늘날의 정부와 관료제는 변화를 모색하지 않으면 더 이상 효율성을 보장하지 못한다. 정부와 관료조직은 개혁과 혁신을 하지 않으면 안 된다. 정부개념은 통치개념에서 이제 합치의 의미를 가진 거버넌스로 바뀌어야 한다. 거버넌스는 국가경영을 의미한다. 관료제 개혁을 통한 정부조직의 개혁과 민주적 참여, 그리고 분권화 등을 통한 정부의 경쟁력을 확보하는 정부활동이 곧 현대적 의미의 국가경영이다.

  • PDF

유전자 알고리즘을 이용한 축류 송풍기 설계최적화 (Design Optimization of Axial Flow Fan Using Genetic Algorithm)

  • 이상환;안철오
    • 한국유체기계학회 논문집
    • /
    • 제7권2호
    • /
    • pp.7-13
    • /
    • 2004
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution agree well to the designer's weighting values, we proposed new multiobjective function which was the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach is effective for the case that the quality of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

Efficient Heuristics for Flowshop Scheduling for Minimizing the Makespan and Total Flowtime of Jobs

  • Hirakawa, Yasuhiro;Ishigaki, Aya
    • Industrial Engineering and Management Systems
    • /
    • 제10권2호
    • /
    • pp.134-139
    • /
    • 2011
  • The problem of scheduling in permutation flowshops has been extensively investigated by many researchers. Recently, attempts are being made to consider more than one objective simultaneously and develop algorithms to obtain a set of Pareto-optimal solutions. Varadharajan et al. (2005) presented a multi-objective simulated-annealing algorithm (MOSA) for the problem of permutation-flowshop scheduling with the objectives of minimizing the makespan and the total flowtime of jobs. The MOSA uses two initial sequences obtained using heuristics, and seeks to obtain non-dominated solutions through the implementation of a probability function, which probabilistically selects the objective of minimizing either the makespan or the total flowtime of jobs. In this paper, the same problem of heuristically developing non-dominated sequences is considered. We propose an effective heuristics based on simulated annealing (SA), in which the weighted sum of the makespan and the total flowtime is used. The essences of the heuristics are in selecting the initial sequence, setting the weight and generating a solution in the search process. Using a benchmark problem provided by Taillard (1993), which was used in the MOSA, these conditions are extracted in a large-scale experiment. The non-dominated sets obtained from the existing algorithms and the proposed heuristics are compared. It was found that the proposed heuristics drastically improved the performance of finding the non-dominated frontier.

A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling

  • Fang, Ying-Chieh;Chyu, Chiuh-Cheng
    • Industrial Engineering and Management Systems
    • /
    • 제8권3호
    • /
    • pp.171-180
    • /
    • 2009
  • Population learning algorithm (PLA) is a population-based method that was inspired by the similarities to the phenomenon of social education process in which a diminishing number of individuals enter an increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project makespan and renewable resource availability, which are two most common concerns of management when a project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules for the management to make a choice. Different improvement schemes and learning procedures are applied at different stages of the process. The process gradually becomes more and more sophisticated and time consuming as there are less and less individuals to be taught. An experiment with ProGen generated instances was conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric does not reveal any significant difference between these five looping algorithms.

거부 및 무차별 선호 조건을 고려한 다기준 그룹 의사결정 (Multi-Criteria Group Decision Making Considering the Willingness to Reject and the Indifferent Preference)

  • 최지윤;김재희;김승권
    • 대한산업공학회지
    • /
    • 제38권1호
    • /
    • pp.57-66
    • /
    • 2012
  • The paper deals with the development of a model for group decision making under multiple criteria. The Multi-criteria group decision making (MCGDM) is the process to determine the best compromise solution in a set of competing alternatives that are evaluated by decision makers having their own preferences on conflicting objectives. For MCGDM, we propose a Mixed-Integer Programming (MIP) model that implements a revised median approach by noticing that the original median approach cannot consider the willingness to reject and the indifferent preference conditions. The proposed MIP model tries to select a common best Pareto-optimal solution by maximizing the overall desirability considering the willingness to reject and the indifferent preference that represent the tolerance measure of each decision maker. To evaluate the effectiveness of the proposed model, we compared the results of the proposed model with those of the median approach. The results showed that the proposed MIP model produces more realistic and better compromised alternative by incorporating the decision maker's willingness to reject and the indifferent preferences over each criteria.

오염부하량 할당에 있어서 다목적 유전알고리즘의 적용 방법에 관한 연구 (Application of multi-objective genetic algorithm for waste load allocation in a river basin)

  • 조재현
    • 환경영향평가
    • /
    • 제22권6호
    • /
    • pp.713-724
    • /
    • 2013
  • In terms of waste load allocation, inequality of waste load discharge must be considered as well as economic aspects such as minimization of waste load abatement. The inequality of waste load discharge between areas was calculated with Gini coefficient and was included as one of the objective functions of the multi-objective waste load allocation. In the past, multi-objective functions were usually weighted and then transformed into a single objective optimization problem. Recently, however, due to the difficulties of applying weighting factors, multi-objective genetic algorithms (GA) that require only one execution for optimization is being developed. This study analyzes multi-objective waste load allocation using NSGA-II-aJG that applies Pareto-dominance theory and it's adaptation of jumping gene. A sensitivity analysis was conducted for the parameters that have significant influence on the solution of multi-objective GA such as population size, crossover probability, mutation probability, length of chromosome, jumping gene probability. Among the five aforementioned parameters, mutation probability turned out to be the most sensitive parameter towards the objective function of minimization of waste load abatement. Spacing and maximum spread are indexes that show the distribution and range of optimum solution, and these two values were the optimum or near optimal values for the selected parameter values to minimize waste load abatement.

모호한 목표를 가진 대화형 퍼지 다목적 의사결정 (Interactive Fuzzy Multiobjective Decision-Making with Imprecise Goals)

  • 이상환;홍성일
    • 한국경영과학회지
    • /
    • 제17권3호
    • /
    • pp.67-78
    • /
    • 1992
  • MODM (multiobjective decision-making) problem is very complex system for the analyst. The problem is more complex if the goals of each of the objective functions are expressed imprecisely. It requires suitable MODM method to deal with imprecisions. Therefore, we present a new interactive fuzzy decision making method for solving multiobjective nonlinear programming problems by assuming that the decision maker (DM) has imprecise goals that assume fuzzy linguistic variable for each of the objective functions. The imprecise goals of the DM are quantified by eliciting corresponding membership functions through the interactive with the DM out of six membership functions. After determining membership functions, in order to generate the compromise or satisficing solution which is .lambda.-pareto optimal, .lambda.-max problem is solved. The higher degree of membership is chosen to satisfy imprecise goals of all objective functions by combining the membership functions. Then, the values are the compromise or satisficing solution. On the basis of the proposed method, and interactive computer programming is written to implement man-machine interactive procedures. Our programming is a revised version of sequential unconstrained minimization technique. Finally, a numerical example illustrates various aspects of the results developed in this paper.

  • PDF

확률분포에 의한 지속기간 및 빈도별 가뭄우량 추정 (Estimation of Drought Rainfall According to Consecutive Duration and Return Period Using Probability Distribution)

  • 이순혁;맹승진;류경식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1103-1106
    • /
    • 2004
  • The objective of this study is to induce the design drought rainfall by the methodology of L-moment including testing homogeneity, independence and outlier of the data of annual minimum monthly rainfall in 57 rainfall stations in Korea in terms of consecutive duration for 1, 2, 4, 6, 9 and 12 months. To select appropriate distribution of the data for annual minimum monthy rainfall by rainfall station, the distribution of generalized extreme value (GEV), generalized logistic (GLO) as well as that of generalized pareto (GPA) are applied and the appropriateness of the applied GEV, GLO, and GPA distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. As for the annual minimum monthly rainfall measured by rainfall station and that stimulated by Monte Carlo techniques, the parameters of the appropriately selected GEV and GPA distributions are calculated by the methodology of L-moment and the design drought rainfall is induced. Through the comparative analysis of design drought rainfall induced by GEV and GPA distribution by rainfall station, the optimal design drought rainfall by rainfall station is provided.

  • PDF

빈도분석에 의한 저수지 유입량 산정 (Estimation of Reservoir Inflow Using Frequency Analysis)

  • 맹승진;황주하;시강
    • 한국농공학회논문집
    • /
    • 제51권3호
    • /
    • pp.53-62
    • /
    • 2009
  • This study was carried out to select optimal probability distribution based on design accumulated monthly mean inflow from the viewpoint of drought by Gamma (GAM), Generalized extreme value (GEV), Generalized logistic (GLO), Generalized normal (GNO), Generalized pareto (GPA), Gumbel (GUM), Normal (NOR), Pearson type 3 (PT3), Wakeby (WAK) and Kappa (KAP) distributions for the observed accumulative monthly mean inflow of Chungjudam. L-moment ratio was calculated using observed accumulative monthly mean inflow. Parameters of 10 probability distributions were estimated by the method of L-moments with the observed accumulated monthly mean inflow. Design accumulated monthly mean inflows obtained by the method of L-moments using different methods for plotting positions formulas in the 10 probability distributions were compared by relative mean error (RME) and relative absolute error (RAE) respectively. It has shown that the design accumulative monthly mean inflow derived by the method of L-moments using Weibull plotting position formula in WAK and KAP distributions were much closer to those of the observed accumulative monthly mean inflow in comparison with those obtained by the method of L-moment with the different formulas for plotting positions in other distributions from the viewpoint of RME and RAE.