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Abstract. Population learning algorithm (PLA) is a population-based method that was inspired by the simila-
rities to the phenomenon of social education process in which a diminishing number of individuals enter an 
increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA 
to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project 
makespan and renewable resource availability, which are two most common concerns of management when a 
project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules 
for the management to make a choice. Different improvement schemes and learning procedures are applied at 
different stages of the process. The process gradually becomes more and more sophisticated and time consuming 
as there are less and less individuals to be taught. An experiment with ProGen generated instances was 
conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic 
local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass 
algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric 
does not reveal any significant difference between these five looping algorithms. 
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1.  INTRODUCTION 

The objective of a project that project management 
plans to achieve should be clear and measurable. Gener-
ally, there are three fundamental objectives of the project 
management: time, cost and quality (Demeulemeester and 
Herroelen, 2002). The relative importance of each objec-
tive will differ for different projects. In many cases, espe-
cially for product innovation and new product develop-
ment projects, time is often considered to be the first pri-
ority among performance objectives. However, in other 
cases such as plant construction and software system pro-
jects, resource availability, normally referring to renew-
able resources, may become the most concern of the pro-
ject management because it comprises the major cost of 
the project. Some examples of renewable resources are 
equipments, technicians, etc. The project quality is usu-

ally measured by the degree to which a project’s outcome 
conforms to the customer’s requirements and the degree 
to which the project completes within budget and on 
schedule (Erenguc and Icmeli-Tukel, 1999).  

Over the past few decades, a great deal of research 
effort in project scheduling has been devoted to develop-
ing exact and heuristic procedures for the resource con-
strained project scheduling problem (RCPSP) with the 
aim of minimizing makespan. The RCPSP specifies con-
stant resource availability for each resource type through-
out the project execution, as well as resource consump-
tion per period during the execution of each activity. Such 
a problem is often referred to as resource constrained 
project scheduling problem (RCPSP) with the objective 
of minimizing the project makespan. Blazewicz et al. 
(1983) has shown that this optimization problem is NP-
hard in the strong sense.  

† : Corresponding Author  
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Many solution approaches have been proposed to 
solve the RCPSP with makespan minimization objective, 
including branch and bound algorithm (B&B), biased 
sampling with local search (LS), genetic algorithm (GA), 
ant colony optimization (ACO), and hybrid metaheuristic 
approaches, such as scatter search/electromagnetism 
(Debels et al., 2006). Kolisch and Hartmann (2006) pro-
vided a valuable survey and investigation on algorithms 
for this problem. The survey indicates that hybrid ap-
proach with the forward/backward improvement (FBI; 
Li and Willis 1992, Valls et al., 2005) method is one of 
the most efficient and effective solution approaches to 
this problem. Tormos and Lova (2003) presented a hy-
brid multi-pass method that combines a biased random 
sampling procedure with a FBI method.  

On the other hand, compared to the minimizing 
makespan problem, relative few studies have been fo-
cused on the RCPSP with the objective of minimizing 
resource availability. Yamashita et al. (2006) proposed a 
scatter search algorithm for solving the SRCPSP with 
the objective of minimizing total resource availability 
cost per period, subject to a project deadline. Hsu and 
Kim (2005) introduced a priority rule heuristic for a 
multi-mode resource investment problem. The problem 
attempts to find precedence, renewable resource- and 
deadline-feasible schedule with the minimum resource 
investment cost per period. The cost of each resource 
type per period is unit cost times the amount available 
per period, and the resource investment cost per period 
is defined as the total cost given the availability setting 
for all resource types.  

Recently, considerable research efforts have been 
spent on RCPSP considering the duration/cost tradeoff 
relations for each activity of the project. Throughout this 
paper, we shall refer to duration as the processing time 
of an activity, and makespan as the completion time of a 
project. Erenguc et al. (2001) brought forward a branch 
and bound method for the RCPSP with multiple crash-
able modes, in which the duration/cost of an activity is 
determined by the mode selection and the duration 
(crashing) within the mode. Vanhouche et al. (2002) 
focused on the discrete duration/cost trade-offs problem 
in project scheduling with time-switch constraints, and 
proposed a branch and bound algorithm, as well as a 
heuristic procedure, to solve this particular problem. The 
problems of continuous duration/cost trade-off with lin-
ear, convex, and concave cost-duration functions had 
been discussed in Demeulemeester and Herroelen 
(2002). These problems did not take resource constraints 
into consideration, and the piecewise-linear approxima-
tion solution method was introduced. A discrete-continuous 
duration/cost trade-off problem with makespan minimi-
zation objective was discussed by Józefowska et al. 
(1998), where the duration of each activity is a function 
of the single continuous resource. Waligóra (2008) pre-
sented a tabu search method for solving two payment 
models of the same trade-off problem with the objective 

of maximizing the net present value. 
The problem under study is an RCPSP that simulta-

neously considers two objectives: project makespan and 
resource availability. Using the classification scheme by 
Herroelen et al. (1999), the problem can be denoted as 
m,1/cpm/(Cmax, av). Unlike the duration/cost tradeoffs 
problem mentioned previously, we consider the trade-
offs relations of the project as a whole, instead of each 
respective activity. The focus of the study is to develop a 
looping population learning algorithm (PLA) capable of 
providing a set of near Pareto optimal feasible project 
schedules within an acceptable time. Several other loop-
ing hybrid algorithms are used for comparison purposes.  

The paper is structured as follows. In section 2, we 
describe the discrete resource constrained makespan/ 
resource tradeoffs project scheduling problem. Section 3 
illustrates several algorithms for the problem under 
study, including the PLA. Section 4 presents our numeri-
cal results, using two sets of instances from PSPLIB 
(Kolisch and Sprecher 1996; http//129.187.106.231/psplib/). 
The last section concludes this paper and suggests a 
further research direction.  

2.  PROBLEM DESCRIPTIONS 

This paper studies an RCPSP considering the trade-
offs between the project makespan and resource avail-
ability. Many research articles focus on minimizing one 
of these two objectives (Demeulemeester and Herroelen, 
2002; Kolisch and Hartmann, 2006; Yamashita et al., 
2006).  

The resource-constrained project scheduling prob-
lem can be stated as follows. A project consists of a set of 
activities (nodes), N = {0, 1, …, J+1}, where activities 0 
and J+1are dummy and represent the events of the start 
time and the completion time of the project, respectively. 
A set of precedence relationships (arcs) between pairs of 
activities must be specified in the project. These activities 
and their associated precedence relationships can be rep-
resented by an acyclic directed network G = (N, A), where 
A is the set of arcs.  

In the study, each activity has to be processed 
without interruption to complete the project (nonpre-
emption). The duration of an activity j is denoted by dj, 
and its request amount for resource type k is rjk. Both dj 
and rjk are predefined and cannot be changed over the 
whole project duration. For the dummy activities, d0 = 
dJ+1 = 0, and r0k = rJ+1, k = 0, for any resource type k. The 
availability of each resource type k in each time period 
is Rk units, k = 1, …, K. A project schedule S can be re-
presented by the start time of each activity, (S0, S1, …, 
SJ+1) with S0 = 0 and project makespan SJ+1, or the finish 
time of each activity, (f0, f1, …, fJ+1) with f0 = 0 and fJ+1 
= SJ+1. Note that fj = Sj + dj for all j. A schedule S is fea-
sible if it satisfies both precedence and resource con-
straints at any execution time period. The objective of 
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the RCPSP is to construct a near Pareto front for the pair 
of objectives: minimizing (a) project makespan and (b) 
total resource availability. The mathematical formulation 
of the problem that refers to Herroelen et al. (1999) is 
shown as follows.  

 

Minimize (SJ+1, 
1

K
k

k
R

=
∑ ) 

Subject to 
Si + di ≤ Sj  for all arcs < i,  j > ∈ A  i = 0, …, J+1 

( )

k
ik

i S t

r R
∈

≤∑  for  k = 1, …, K    t = 1, …, T 

 
where S(t) is the set of activities in progress during 

time period [t-1, t] and T is an upper bound on the project 
makespan.  

Figure 1 displays a project example with one re-
source type and eight activities, which are represented by 
nodes 1 to 8. Node 0 denotes the starting event whereas 
node 9 the ending event. Both are dummy nodes with 
zero duration and resource usage. In this example, r11 = 2, 
d1 = 3 and we will assume that R1 = 4.  
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Figure 1. A project with one resource type. 

3.  PROBLEM SOLVING METHODS 

In an acyclic directed network, there exists a topo-
logical ordering on nodes such that no node is numbered 
smaller than any of its predecessors. An activity list (AL) 
is a sequence of the activities that follows the prece-
dence constraints. There are two methods to decode an 
AL as a project schedule: one is serial schedule genera-
tion scheme (S-SGS), and the other is parallel schedule 
generation scheme (P-SGS). The former will produce an 
active schedule, whereas the latter will produce a non-
delay schedule. It is well known that optimal schedules 
must be active schedules, which include non-delay sche-
dules. In our algorithm, S-SGS is used for decoding AL.  

In order to construct a near Pareto front based on 
the two objectives mentioned in section 2, the paper 
proposes the framework as shown in Algorithm Main 
Framework, in which an algorithm for solving the 
RCPSP with the objective of minimizing makespan can 
be repeatedly employed.  

Algorithm Main Framework: 
Step 1: Employ the critical path method (CPM) to 

find the minimum makespan ,CPMT as well 
as the quantity consumed of each resource 
type corresponding to the CPM schedule, 
( 1

max ,R …, max
KR ). Compute the maximum 

total quantity of resource from the CPM 
schedule: MaxRsum = 1

maxR + … + max ,KR  as 
well as the minimum total quantity of re-
source required for executing every activity, 
MinRsum = 1

minR + … + min ,KR  where min
kR  

is the minimum quantity required of re-
source type k to implement all activities, 
i.e., min

kR = Max{rjk | j = 1, …, J}.  
Step 2: Select randomly one of resource types from 

{1, … , K} and decrease its available 
amount by one unit. If this type has been 
consecutively chosen for four times, give 
up the choice and begin another selection. 
Whenever a resource type k has declined to 
its minimum amount min

kR , remove type k 
from the candidate list.  

Step 3: Employ an efficient algorithm to find the 
minimum or a near minimum makespan of 
the RCPSP with the resource availability 
obtained in Step 2.  

Step 4: If all resource types have reached its mini-
mum required amount, go to Step 5; other-
wise, go to Step 2. 

Step 5: Construct the near Pareto front by compar-
ing all the best solutions obtained.  

 
In Step 3, five algorithms are applied to solve the 

RCPSP with minimum makespan: (1) Combining multi-
ple pass method (Boctor, 1990) with parameterized re-
gret-based biased random sampling (Kolisch and Drexl, 
1996), denoted as (MP-RBRS); (2) Genetic local search 
(GLS); (3) Particle swarm optimization with local se-
arch (PSO-LS); (4) Scatter search (SS); (5) Population 
learning algorithm (PLA). All five algorithms are simi-
lar in structure to those that have been used in the litera-
ture. The PLA was originally introduced by Jedrze-
jowicz (1999). Based on the PLA concept, we have de-
vised a PLA covering the first four aforementioned algo-
rithms in the evolutionary stages.  

In the framework, whenever the total quantity of 
resource is reduced by one unit, the selected algorithm 
computes five thousand solutions (in Step 3) to find a 
near-optimal makespan. The five algorithms are described 
below. 

3.1 Multi-pass regret biased random sampling 
(MP-RBRS) 

In this algorithm, five priority rules are used: shortest 
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process time (SPT), minimum slack time (MST), earliest 
start time (EST), earliest finish time (EFT), and latest 
finish time (LFT). At each step, one of the five rules is 
firstly chosen at random. Then the RBRS scheme based 
on the selected priority rule is applied to choose an activ-
ity from the candidate list. The same procedure is re-
peated until an AL has been attained. Afterwards, the se-
rial schedule generation scheme (S-SGS) is employed to 
decode this AL to an active schedule, and then the FBI 
(forward/backward improvement) is applied to refine this 
schedule (see Figures 1 and 4~5 for examples). The MP-
RBRS algorithm computes five thousand solutions and 
return with the best one. The following describes the 
RBRS procedure:   

Let D be the candidate list of activities at the current 
step. The regret value (ρi) for each activity i in D com-
pares the priority value of activity i, v(i), with the worst 
priority value v(j) of the activities of D and is calculated 
as follows:  

ρi = max{v(j) | j∈D} – v(i), and the parameterised 
probability (φi) is calculated as follows:  

φi =
( ) ,

( )
i

jj D

ρ ε
ρ ε

∈

+
+∑

   (1) 

whereεis a predetermined parameter value. 

3.2 Genetic local search (GLS) 

The GLS adopts an elitist strategy to maintain good 
quality solutions in each generation. In this algorithm, 
roulette wheel is used for reproduction, one point cross-
over for producing offspring, two-swap operation for 
mutation, and the FBI for further improvement. Valls et 
al. (2005) and Kolisch, and Hartmann (2006) have shown 
that the FBI is the most effective local search in the pro-
ject scheduling problem with makespan minimization 
objective. Our GLS also adopts the FBI to refine a new 
GA solution, but the means to perform one point cross-
over and two-swap mutation is different from those by 
Alcaraz et al. (2004) and Valls et al. (2005). Figure 2 
illustrates our mutation using Figure 1. A mutation con-
sists of four steps: (1) Convert an AL to a weight list 
(WL), where the weight of an activity is the list order of 

the activity in the AL; (2) Randomly select two positions 
in the WL and swap their weights; in the example, 
weights of activities 2 and 7 are swapped; (3) Convert 
the WL to AL based on precedence and weights. The 
one point crossover also applies the conversion process.  

The algorithm terminates when five thousand solu-
tions have been attained. The population size is set to 50, 
the crossover rate is 0.9, and the mutation rate is 0.1.  

3.3 Particle swarm optimization with local search 
(PSO-LS) 

Kennedy and Eberhart (1995) proposed PSO, which 
was inspired by the choreography of a bird flock. The 
idea of this approach is to simulate the movement of a 
group (or population) of birds which aim to find food. 
This approach can be viewed as a distributed behavioral 
algorithm that performs multidirectional search. In the 
proposed algorithm, a particle P[i] is a random key list 
(RKL), which is a representation of a project schedule. 
An RKL can be converted to an AL and then the AL is 
decoded as an active project schedule through the S-
SGS. Figures 3 to 6 depict the evaluation process of a 
particle P[i] using the Figure 1 example. Figure 3 shows 
the converting process from an RKL to an AL. Figure 4 
presents the project schedule corresponding to the AL 
via S-SGS. Figure 5 shows the FBI procedure. Figure 6 
presents a better quality RKL which is obtained by reor-
dering the random key numbers according to the starting 
times of the FBI schedule in increasing order.  

Our PSO is different in that it applies the FBI local 
search. Zhang et al. (2005) employed PSO to solve RC 
PSP using continuous and discrete solution representa-
tion schemes, particle-representation priority and parti-
cle-representation permutation. The two schemes func-
tion similarly to RKL and AL. The population size 
adopted is equal to the number of non-dummy activities 
in the project. Kemmoé Tchomté and Gourgand (2009) 
proposed a particle displacement PSO and applied its 
discrete version to solve RCPSP using left- and right- 
shift local search.  

For PSO with continuous representation scheme, 
the acceleration coefficients, c1 and c2, are typically set 
to a value of 2.0 (Eberhart et al., 1996). Suganthan (1999) 
has shown that setting c1 ≠ c2 can lead to improved per-
formance. In our PSO, we tested c1 and c2 near 2.0, and 
obtained c1 = 2.0 and c2 = 2.1. The population size is set 
to a constant of 30 for the benchmark instances, which 
consist of 30 and 60 activities. The inertia weight, w, is 
set to 0.3 based on several test results.  

 

 

Figure 3. Converting RKL to AL. 
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Figure 2. An example of mutation. 
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Figure 4. Project schedule corresponding to AL in Fig. 2. 
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Figure 6. RKL of the schedule after FBI. 

 
PSO-LS algorithm 
Step 0: Set population size M = 30; initialize the 

speed of particle i, V[i] = 0; initial weight w 
= 0.3; two constants c1 = 2, c2 = 2.1; 

Step 1: For i = 1 to M 
Randomly generate a particle P[i]; 
Evaluate P[i] (apply converting process to 
obtain a schedule); 
End for 
GLbest = PObest = Best{P[i]: i = 1, …, M} 

Step 2: Repeat the following procedure until 5000 
solutions have been attained. 
Begin 
For i = 1 to M 
V[i] = [ ]w V i⋅ + 1 1c B⋅ ⋅ (PObest – P[i])  
      + 2 2c B⋅ ⋅ (GLbest – P[i]); 
(Calculate speed of each particle, w = Inertial 
weight, B1 and B2 are random numbers in [0, 
1]) 
P [i] = P[i] + V[i];  Evaluate P[i]; 

If P[i] is better than PObest, then PObest = 
P[i]; 
If PObest is better than GLbest,  
     then GLbest = PObest; 
  End For 
End (Begin). 

3.4 Scatter search 

Scatter search (SS), proposed by Glover (1977, 2003), 
is a population-based heuristic that has shown great po-
tential for solving many hard combinatorial optimization 
problems, such as RCPSP and its variants (Debel et al. 
2006; Yamashita et al., 2006), and capacitated facility lo-
cation problems (Keskin and Üster, 2007). The funda-
mental concepts and principles are presented in Martı’ et 
al. (2006). We develop a looping framework that uses 
scatter search with hybrid improvements, including FBI 
local search and path-relinking routines for the make/ 
resource trade-offs project scheduling. Each scatter search 
iteration calculates five thousand solutions.  

A scatter search consists of five components: diversi-
fication generation, improvement, reference -set update, 
solution recombination, and subset generation. In our 
algorithm, the reference set size is set to 10 and consists 
of two types of solutions: quality and diversity. We tested 
three combinations of solution types: 8:2, 7:3, and 6:4. 
The results indicate that the ratio, 7:3, is the most appro-
priate. For subset generation method, we consider all pair 
combinations, which are 45 pairs. To perform solution 
recombination for each pair, we adopt three-stage path-
relinking. In each stage, we randomly choose one-fourth 
of positions, convert AL to WL, swap the weights, and 
convert WL back to AL. The best solution found in this 
stage is improved by FBI. Meanwhile, the resulting 45 
solution pairs in each stage will become the parent solu-
tion pairs for the next stage. Furthermore, the distance 
between two solutions x and y is defined as the number of 
positions of different activities in the corresponding two 
ALs. The diversity metric of a solution x is defined as the 
smallest distance from the seven quality solutions in the 
reference set.  

The scatter search used in the study is described as 
follows: 

 
Step 1: Randomly generate 500 Activity lists. Select 

seven best quality solutions and three most 
diverse solutions into the reference set.  

Step 2: Perform subset combination.  
Step 3: For every pair combination, perform three-

stage solution recombination; perform FBI 
for each pair of solutions at the end of last 
stage.  

Step 4: If termination condition is not satisfied, update 
the reference set and go to Step 2; otherwise, 
terminate the algorithm.  
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3.5 Population learning algorithm (PLA) 

PLA was originally introduced by Jedrzejowicz 
(1999). The PLA is a population-based method inspired 
by analogies to a phenomenon of social education process 
in which a diminishing number of individuals enter more 
and more advanced learning stages. It possesses the fol-
lowing characteristics: (1) A huge number of individuals 
enter the system, (2) Individuals learn through organized 
environment as well as self study, (3) Learning processes 
is inherently parallel (different learning environments), (4) 
Learning process is divided into stages, (5) More ad-
vanced stages are entered by a diminishing number of 
individuals from the initial population, (6) At higher stage 
more advanced learning and improvement techniques are 
used, and (7) A final stage is reached by only a fraction of 
the initial population.  

The proposed PLA consists of an initial stage and 
three learning stages: 

 
• In the initial stage, RBRS-MP is employed to gen-

erate a large number of diversified individuals. Se-
lect the best half of individuals in the population 
and enter the first stage.  

• The learning process in the first stage adopts an 
elitist hybrid evolutionary algorithm (HEA). At 
each generation step, 70% of individuals are pro-
duced using single point crossover, 20% of indi-
viduals using 2-swap mutations, and 10% of indi-
viduals using the bidirectional planning heuristic 
(Kiein, 2000). The implementation of one bidirec-
tional planning procedure requires taking two in-
dividuals from the parent population. All offspring 
produced in this generation and all individuals in 
the parent population will compete for the mem-
berships of the next population. Select a fraction 
of individuals in the final population to enter the 
second stage.  

• In the second stage, PSO-LS is used as an ad-
vanced learning tool. It should be noticed that be-
fore applying this algorithm, all individuals of the 
initial population coming from the second stage 
must be converted into random key representa-
tions.  

• In the final stage, scatter search (SS; Glover and 
Kochenberge, 2003; Laguna and Glover, 2006; Ya-
mashita and Armentano, 2006) is applied. The ref-
erence set consists of four high quality solutions 
and one diverse solution. The first reference set 
takes the best four solutions and the most diversi-
fied solution from the final population at the sec-
ond stage. To find a most diversified solution, we 
define the distance measure between two indi-
viduals as  

 
D(RKLi, RKLk) = 

1
| RKL [ ] RKL [ ] |,

J

i k
j

j j
=

−∑  
 

and we define the diversity measure of an RKL as Div =  

{ (RKL, RKL ) | }qMin D q Q∈ , where Q is the set of quality 
solutions in the reference set. A most diversified solution 
in a group is the RKL that has the maximum value of Div.  

The other elements of the SS used in this stage are 
described below. 

 
(a) Two-element subset generation method. This method 

will generate a total of 10 pairs of RKLs. For 
each pair, the RKL with higher quality will serve 
as the initiating solution and the other as the 
guiding solution.  

(b) Path re-linking solution recombination method. 
An iteration of solution recombination method 
produces four offspring. Let x and y be the initi-
ating solution and guiding solution, respectively. 
To produce the first offspring, one-fourth of po-
sitions in x are randomly chosen and these ran-
dom key numbers are replaced with those in the 
same positions in y. Denote the new RKL as x1. 
The same procedure is applied to x1 and y to 
produce the second offspring x2, and so on. The 
best schedule among the four RKLs will be fur-
ther refined by the FBI procedure, and the re-
sulting solution will be converted back to RKL, 
which will be used to update the reference set.  

 
Since all four algorithms are effective in solving the 

RCPSP, our order of matching the PLA algorithm in sta-
ges is primary based on the suitable population size for 
each algorithm. We observed in the literature that the rank 
of population sizes commonly adopted is HEA, PSO-LS, 
and SS. The RBRS-MP is suitable for generating a large 
number of diverse and quality solutions. In SS, the size of 
reference set is small due to the fact that a reference set 
will generate a considerable number of solutions in two-
element subset generation procedure and path re-linking 
solution recombination procedure. These two procedures 
can be viewed as intensive local search or advanced 
learning procedure. In the PLA, the output solutions of 
each stage are screened and selected as the input for the 
next stage. The number of solutions distributed to the four 
stages are 100, 2000, 2000, and 900, respectively.  

4.  EXPERIMENTAL RESULTS  

In this section, the performances of the proposed al-
gorithms for the discrete makespan/cost tradeoffs RCPSP 
are evaluated and then compared against each other via 
two sets of benchmark instances, each of which was 
drawn from PSPLIB with resource strength (RS) equal to 
0.5. The following performance metrics are used: (1) C 
measure for pair-wise comparison, (2) Error rate (ER), 
Generational distance (GD), and Overall non-dominated 
vector generation rate (ONVGR) for measurement of 
convergence or proximity, and (3) Spread for measure-
ment of diversity. Set 1 contains four instances, each of 
which has 30 activities, four resource types, and network 
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complexity (NC) of 2.1; that is, each activity has an aver-
age of 2.1 successors. In addition, the resource factors 
(RF) of the four instances are 0.25, 0.5, 0.75, 1.0, which 
are denoted as j30_1 to j30_4, respectively. The RF refers 
to the fraction of resource types used by each activity in a 
project. For example, RF = 0.5 means that each activity 
consumes two resource types. Set 2 contains four in-
stances of 60 activities with the same problem parameter 
values as in Set 1. All algorithms were coded in Borland 
C++Builder 6, and tested on a computer with Intel core 
dual, 1.86GHz and 2 Giga bytes DDR667. Table 1 dis-
plays the computation times of the algorithms on each 
instance. The SS based algorithm takes longer times than 
the others. Such a result is likely due to the update proc-
ess for the diverse solutions in the reference set. 

 
Table 1. Computation times of algorithms. 

  Computation times(in seconds) 

algorithm j30_1 j30_2 j30_3 j30_4 j60_1 j60_2 j60_3 j60_4

PLA 7.63  8.94  10.25 10.31 36.74 39.64 42.54 45.25 

GLS 7.05  7.36  7.69  7.38  31.13 31.81 31.86 32.53 

PSO-LS 8.32  8.65  8.65  8.98  38.87 38.88 38.92 39.59 

MP-RBRS 5.76  5.78  6.09  6.40  23.89 24.17 24.35 24.71 

SS 8.77  10.73 11.79 12.51 40.78 44.79 55.72 57.12 

 
In the absence of any known true Pareto-front, we 

computed reference set as non-dominated solutions from 
the combination of all the five solution sets produced by 
PLA, MP-RBRS, GLS, PSO-LS, and SS. The performances 
of these algorithms based on the metrics are presented as 
follows. 

4.1 Pair-wise Comparison 

C measure (Zitzler and Thiele, 1999) compares two 
sets directly and indicates coverage of one set over an-
other. It does not require any reference points to compute 
the measure and hence, is not sensitive to any external 
input. Let A and B be the non-dominated solutions sets 
computed by algorithms PA and PB, respectively. The 
measure C(PA, PB) maps the ordered pair (A, B) to the 
interval [0, 1], is given by  

| :      |( , ) ,
| |A B

b B a A a bC P P
B

∈ ∃ ∈ ∋= ≺      (2) 

where   a b≺  means that solution a is not dominated 
by b. If C(PA, PB) equals 1, it would imply that all 
representative solutions found by algorithm PB are 
covered by those found by algorithm PA. In other words, 
algorithm PB does not produce any solution that is neither 
dominated nor the same as any solution produced by PA. 
Table 2 displays the pair-wise comparison results for the 
eight instances. Apparently, the PLA outperforms the 
others in this measure, and the GLS ranks second when 
performance is viewed on all instances. On the other hand, 

the PSO underperforms the others. This may be due to the 
fact that the feature of PSO and the RKL is suitable for 
continuous objective functions. There are many RKLs 
corresponding to one AL, which will make solution 
search ineffective.  

 
Table 2. C measure on the four algorithms(in % ). 

J30_1 J60_1 C (Prow, 
Pcolumn) PLA GLS PSO-

LS 
MP-

RBRS SS PLA GLS PSO-
LS 

MP-
RBRS SS

PLA ＼ 0.00 0.00 0.00  0.00 ＼ 0.50 0.20 0.36 0.40 

GLS 1.00 ＼ 0.20 0.50  0.25 0.60 ＼ 0.20 0.36 0.50 

PSO-LS 1.00 0.50 ＼ 1.00  0.50 0.80 0.83 ＼ 0.64 0.60 

MP-RBRS 0.67 0.25 0.00 ＼ 0.25 0.60 0.75 0.40 ＼ 0.30 

SS 1.00 0.75 0.40 0.50  ＼ 0.60 0.58 0.40 0.64 ＼

J30_2 J60_2 
C measure

PLA GLS PSO-
LS 

MP-
RBRS SS PLA GLS PSO-

LS 
MP-

RBRS SS

PLA ＼ 0.36 0.09 0.10  0.10 ＼ 0.74 0.39 0.05 0.24 

GLS 0.25 ＼ 0.00 0.10  0.00 0.14 ＼ 0.06 0.57 0.10 

PSO-LS 0.88 1.00 ＼ 0.50  0.50 0.59 0.90 ＼ 0.86 0.38 

MP-RBRS 0.75 0.73 0.27 ＼ 0.30 0.90 0.39 0.06 ＼ 0.10 

SS 0.88 1.00 0.36 0.50  ＼ 0.64 0.84 0.33 0.86 ＼

J30_3 J60_3 
C measure

PLA GLS PSO-
LS 

MP-
RBRS SS PLA GLS PSO-

LS 
MP-

RBRS SS

PLA ＼ 0.00 0.43 0.53  0.61 ＼ 0.06 0.28 0.38 0.31 

GLS 1.00 ＼ 0.00 0.00  0.00 0.90 ＼ 0.22 0.09 0.37 

PSO-LS 0.56 1.00 ＼ 0.33  0.22 0.61 0.60 ＼ 0.35 0.57 

MP-RBRS 0.39 0.95 0.48 ＼ 0.28 0.50 0.83 0.53 ＼ 0.60 

SS 0.39 1.00 0.52 0.53  ＼ 0.67 0.48 0.31 0.29 ＼

J30_4 J60_4 
C measure

PLA GLS PSO-
LS 

MP-
RBRS SS PLA GLS PSO-

LS 
MP-

RBRS SS

PLA ＼ 0.15 0.15 0.00  0.12 ＼ 0.05 0.07 0.30 0.10 

GLS 0.88 ＼ 0.44 0.41  0.44 0.89 ＼ 0.00 0.02 0.08 

PSO-LS 0.88 0.64 ＼ 0.44  0.69 0.88 1.00 ＼ 0.81 0.51 

MP-RBRS 1.00 0.56 0.48 ＼ 0.63 0.63 0.95 0.20 ＼ 0.13 

SS 0.81 0.36 0.16 0.30  ＼ 0.90 0.97 0.41 0.84 ＼

4.2 Convergence Measure 

Three metrics are proposed to measure the closeness 
of a solution set to a Pareto set or a reference set. 

The first metric is error ratio (ER), proposed by 
Veldhuizen (1999). It is defined as the ratio of the number 
of solutions not contained in the global reference set over 
the number of representative solutions found by the algo-
rithm. The drawback of this measure is that it will not 
reflect a true performance when the reference set is not 
large and dense enough. The second metric is overall 
non-dominated vector generation ratio (ONVGR; Van 
Veldhuizen, 1999), which is similar to the first one, ex-
cept that the denumerator is replaced with the number of 
solutions in the reference set. The third one is genera-
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tional distance (GD; Deb, 2002), which is defined as fol-
lows: 

GD(A) = 

| |

1

| |

A

i
i

h

A
=
∑

, where    (3) 

22
| *|

1 max min
1

i j
P k k

i j
k k k

g gh Min
g g=

=

⎛ ⎞−= ⎜ ⎟−⎝ ⎠
∑           (4) 

In the above mathematical expressions, A is the rep-
resentative solution set found by a proposed algorithm, 

max
kg  and 

min
kg  are the maximum and minimum function 

values, respectively, of the kth objective function in the 
reference set P*. Here, max

2g  is the sum of maximum re-
source usage and min

1g  is the makespan corresponding to 
the CPM schedule, respectively; min

2g  is the sum of mi-
nimum required units of each resource type; max

1g  is the 
best makespan of the minimum resource availability pro-
blem, found by the four proposed heuristics based on five 
solutions. 

 
Table 3. Convergence performance of the algorithms. 

  j30_1 (RF = 0.25) j60_1 (RF = 0.25) 

algorithm ER ONVGR GD ER ONVGR GD 

PLA 0.6 0.5 0.0427 0.3 0.7 0.00302

GLS 0.75 0.25 0.0264 0.917 0.1 0.0249

PSO-LS 1 0 0.0657 0.7 0.3 0.0187

MP-RBRS 1 0 0.0822 0.818 0.2 0.0193

SS 0.5 0.5 0.0196 0.6 0.4 0.0206

  j30_2 (RF = 0.50) j60_2 (RF = 0.50) 

algorithm ER ONVGR GD ER ONVGR GD 

PLA 0.273 0.615 0.00388 0.444 0.357 0.00491

GLS 1 0 0.0423 0.968 0.0357 0.0164

PSO-LS 0.875 0.0769 0.0281 0.682 0.25 0.00521

MP-RBRS 0.7 0.231 0.0103 0.905 0.0714 0.0152

SS 0.8 0.154 0.00817 0.476 0.393 0.00515

  j30_3 (RF = 0.75) j60_3 (RF = 0.75) 

algorithm ER ONVGR GD ER ONVGR GD 

PLA 0.667 0.273 0.00792 0 1 0 

GLS 1 0 0.0344 1 0 0.00804

PSO-LS 0.714 0.273 0.0119 1 0 0.00568

MP-RBRS 0.667 0.227 0.0183 0.974 0.0333 0.0078

SS 0.556 0.364 0.0172 0.906 0.1 0.00459

  j30_4 (RF = 1.0) j60_4 (RF = 1.0) 

algorithm ER ONVGR GD ER ONVGR GD 

PLA 0.385 0.696 0.00335 0.409 0.565 0.00241

GLS 0.88 0.13 0.00774 1 0 0.016 

PSO-LS 0.88 0.13 0.00677 0.951 0.0435 0.00689

MP-RBRS 1 0 0.00761 0.977 0.0217 0.00462

SS 0.875 0.087 0.0133 0.513 0.413 0.00252

Our experimental findings indicate that the number 
of reference solutions are significantly influenced by 
problem size and RF; for instance, the number of refer-
ence solutions are 4, 14, 20 and 10, 22, 39 for 30-activity 
and 60-activity instances with RF = 0.25, 0.50, 0.75, 1, 
respectively. Similar results are observed in the number 
of representative solutions obtained by each algorithm. 

The convergence measures of the five algorithms are 
given in Table 3. Clearly, PLA excels in ER and ONVGR 
measures for all instances, and the discrepancy becomes 
more pronounced as RF and problem size increase. Algo-
rithm SS ranks second in these two performance metrics. 
As for GD metric, PLA on the whole yields the best per-
formance for large RF and problem sizes, followed by SS, 
PSO-LS and MP-RBRS, and finally GLS. The PLA pro-
vides a flexible design that integrates various types of 
algorithms, and utilizes their advantages. Our experimen-
tal results have shown the superiority of the PLA’s hybrid 
structure. 

4.3 Diversity Measure 

Diversity is another important characteristic for mea-
suring the quality of a nondominated solution set. One 
popular measure for diversity is spread (Deb, 2001), which 
calculates a relative distance between consecutive repre-
sentative (nondominated) solutions. It takes care of the 
extent of the spread also and requires a reference set P* to 
compute the measure. Mathematically, it may be ex-
pressed as: 

Spread (A) = 
22

| *|
1 max min

1

i j
P k k

i j
k k k

g gh Min
g g=

=

⎛ ⎞−= ⎜ ⎟−⎝ ⎠
∑       (5) 

where ih  is the distance between two consecutive 
solutions, h  is the mean of all ih ’s, e

mh  is the distance 
between the extreme solutions of P* and A corresponding 
to the mth objective function. The value of this measure is 
zero for an ideal distribution of solution set but it can be 
more than 1 as well for a bad distribution of solution set. 
Table 4 presents the spread measure of the five algo-
rithms. It shows that the diversity of the solutions ob-
tained by the five algorithms does not substantially devi-
ate from each other. However, GLS appears to perform 
better than the others for the 60-activity instances. 

 
Table 4. Spread measure of the algorithms. 

 Spread 

algorithm j30_1 j30_2 j30_3 j30_4 j60_1 j60_2 j60_3 j60_4

PLA 0.455 0.448 0.488 0.352 0.837 0.679 0.708 0.678

GLS 0.216 0.788 0.564 0.402 0.657 0.713 0.68 0.582

PSO-LS 0.622 0.624 0.538 0.393 0.778 0.815 0.66 0.678

MP-RBRS 0.359 0.421 0.601 0.398 0.688 0.69 0.726 0.702

SS 0.423 0.334 0.475 0.554 0.766 0.841 0.766 0.622
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5.  CONCLUSIONS AND FUTURE        
RESEARCH 

This paper studies the discrete makespan/resource 
tradeoffs RCPSP with an aim to provide the project man-
agement with a set of competitive alternatives when ne-
gotiating projects with clients. The problem solving ap-
proach comprises two phases: (1) construct a main algo-
rithm framework, and (2) select an algorithm that will 
work efficiently and effectively under this framework. 
Five algorithms are developed to solve the RCPSP with 
the objective of minimizing project makespan. An ex-
periment was conducted to test which composite algo-
rithm will provide the most satisfactory result to the pro-
ject management. The experimental results show that the 
new hybrid approach, population learning algorithm, per-
forms better than the other three algorithms, particle swarm 
optimization, genetic local search, regret-based biased ran-
dom sampling multi-pass, in terms of pair-wise compari-
son as well as convergence measure. However, the spread 
metric does not reveal any significant difference in diver-
sity between the four algorithms. 

This study is focused on developing a promising al-
gorithm for solving the single-mode makespan/resource 
tradeoffs RCPSP. A more attractive research work would 
be to extend the current study to a multi-mode case; i.e., 
each activity has two or more execution options due to 
resource/resource and resource/duration tradeoffs. Such 
problems, regardless of whether the resource types are 
discrete, continuous, or mixed, are much more challeng-
ing and useful in practice. 
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