
IEMS Vol. 8, No. 3, pp. 171-180, September 2009.

A Looping Population Learning Algorithm for the
Makespan/Resource Trade-offs Project Scheduling

Ying-Chieh Fang
Department of Industrial Engineering and Management

Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li, 320, Taiwan, R.O.C.
Tel: +886-3-463-8800, E-mail: iehshsu@saturn.yzu.edu.tw

Chiuh-Cheng Chyu†

Department of Industrial Engineering and Management
Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li, 320, Taiwan, R.O.C.

Tel: +886-3-463-8800, E-mail: iehshsu@saturn.yzu.edu.tw

Received Date, March 25, 2009; Revised Date, July 31, 2009; Accepted Date, August 3, 2009 (Selected from APIEMS 2008)

Abstract. Population learning algorithm (PLA) is a population-based method that was inspired by the simila-
rities to the phenomenon of social education process in which a diminishing number of individuals enter an
increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA
to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project
makespan and renewable resource availability, which are two most common concerns of management when a
project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules
for the management to make a choice. Different improvement schemes and learning procedures are applied at
different stages of the process. The process gradually becomes more and more sophisticated and time consuming
as there are less and less individuals to be taught. An experiment with ProGen generated instances was
conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic
local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass
algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric
does not reveal any significant difference between these five looping algorithms.

Keywords: Project Scheduling, Population Learning Algorithms, Genetic Algorithms, Particle Swarm

Optimization, Scatter Search, Forward/Backward Improvement

1. INTRODUCTION

The objective of a project that project management
plans to achieve should be clear and measurable. Gener-
ally, there are three fundamental objectives of the project
management: time, cost and quality (Demeulemeester and
Herroelen, 2002). The relative importance of each objec-
tive will differ for different projects. In many cases, espe-
cially for product innovation and new product develop-
ment projects, time is often considered to be the first pri-
ority among performance objectives. However, in other
cases such as plant construction and software system pro-
jects, resource availability, normally referring to renew-
able resources, may become the most concern of the pro-
ject management because it comprises the major cost of
the project. Some examples of renewable resources are
equipments, technicians, etc. The project quality is usu-

ally measured by the degree to which a project’s outcome
conforms to the customer’s requirements and the degree
to which the project completes within budget and on
schedule (Erenguc and Icmeli-Tukel, 1999).

Over the past few decades, a great deal of research
effort in project scheduling has been devoted to develop-
ing exact and heuristic procedures for the resource con-
strained project scheduling problem (RCPSP) with the
aim of minimizing makespan. The RCPSP specifies con-
stant resource availability for each resource type through-
out the project execution, as well as resource consump-
tion per period during the execution of each activity. Such
a problem is often referred to as resource constrained
project scheduling problem (RCPSP) with the objective
of minimizing the project makespan. Blazewicz et al.
(1983) has shown that this optimization problem is NP-
hard in the strong sense.

† : Corresponding Author

172 Ying-Chieh Fang·Chiuh-Cheng Chyu

Many solution approaches have been proposed to
solve the RCPSP with makespan minimization objective,
including branch and bound algorithm (B&B), biased
sampling with local search (LS), genetic algorithm (GA),
ant colony optimization (ACO), and hybrid metaheuristic
approaches, such as scatter search/electromagnetism
(Debels et al., 2006). Kolisch and Hartmann (2006) pro-
vided a valuable survey and investigation on algorithms
for this problem. The survey indicates that hybrid ap-
proach with the forward/backward improvement (FBI;
Li and Willis 1992, Valls et al., 2005) method is one of
the most efficient and effective solution approaches to
this problem. Tormos and Lova (2003) presented a hy-
brid multi-pass method that combines a biased random
sampling procedure with a FBI method.

On the other hand, compared to the minimizing
makespan problem, relative few studies have been fo-
cused on the RCPSP with the objective of minimizing
resource availability. Yamashita et al. (2006) proposed a
scatter search algorithm for solving the SRCPSP with
the objective of minimizing total resource availability
cost per period, subject to a project deadline. Hsu and
Kim (2005) introduced a priority rule heuristic for a
multi-mode resource investment problem. The problem
attempts to find precedence, renewable resource- and
deadline-feasible schedule with the minimum resource
investment cost per period. The cost of each resource
type per period is unit cost times the amount available
per period, and the resource investment cost per period
is defined as the total cost given the availability setting
for all resource types.

Recently, considerable research efforts have been
spent on RCPSP considering the duration/cost tradeoff
relations for each activity of the project. Throughout this
paper, we shall refer to duration as the processing time
of an activity, and makespan as the completion time of a
project. Erenguc et al. (2001) brought forward a branch
and bound method for the RCPSP with multiple crash-
able modes, in which the duration/cost of an activity is
determined by the mode selection and the duration
(crashing) within the mode. Vanhouche et al. (2002)
focused on the discrete duration/cost trade-offs problem
in project scheduling with time-switch constraints, and
proposed a branch and bound algorithm, as well as a
heuristic procedure, to solve this particular problem. The
problems of continuous duration/cost trade-off with lin-
ear, convex, and concave cost-duration functions had
been discussed in Demeulemeester and Herroelen
(2002). These problems did not take resource constraints
into consideration, and the piecewise-linear approxima-
tion solution method was introduced. A discrete-continuous
duration/cost trade-off problem with makespan minimi-
zation objective was discussed by Józefowska et al.
(1998), where the duration of each activity is a function
of the single continuous resource. Waligóra (2008) pre-
sented a tabu search method for solving two payment
models of the same trade-off problem with the objective

of maximizing the net present value.
The problem under study is an RCPSP that simulta-

neously considers two objectives: project makespan and
resource availability. Using the classification scheme by
Herroelen et al. (1999), the problem can be denoted as
m,1/cpm/(Cmax, av). Unlike the duration/cost tradeoffs
problem mentioned previously, we consider the trade-
offs relations of the project as a whole, instead of each
respective activity. The focus of the study is to develop a
looping population learning algorithm (PLA) capable of
providing a set of near Pareto optimal feasible project
schedules within an acceptable time. Several other loop-
ing hybrid algorithms are used for comparison purposes.

The paper is structured as follows. In section 2, we
describe the discrete resource constrained makespan/
resource tradeoffs project scheduling problem. Section 3
illustrates several algorithms for the problem under
study, including the PLA. Section 4 presents our numeri-
cal results, using two sets of instances from PSPLIB
(Kolisch and Sprecher 1996; http//129.187.106.231/psplib/).
The last section concludes this paper and suggests a
further research direction.

2. PROBLEM DESCRIPTIONS

This paper studies an RCPSP considering the trade-
offs between the project makespan and resource avail-
ability. Many research articles focus on minimizing one
of these two objectives (Demeulemeester and Herroelen,
2002; Kolisch and Hartmann, 2006; Yamashita et al.,
2006).

The resource-constrained project scheduling prob-
lem can be stated as follows. A project consists of a set of
activities (nodes), N = {0, 1, …, J+1}, where activities 0
and J+1are dummy and represent the events of the start
time and the completion time of the project, respectively.
A set of precedence relationships (arcs) between pairs of
activities must be specified in the project. These activities
and their associated precedence relationships can be rep-
resented by an acyclic directed network G = (N, A), where
A is the set of arcs.

In the study, each activity has to be processed
without interruption to complete the project (nonpre-
emption). The duration of an activity j is denoted by dj,
and its request amount for resource type k is rjk. Both dj
and rjk are predefined and cannot be changed over the
whole project duration. For the dummy activities, d0 =
dJ+1 = 0, and r0k = rJ+1, k = 0, for any resource type k. The
availability of each resource type k in each time period
is Rk units, k = 1, …, K. A project schedule S can be re-
presented by the start time of each activity, (S0, S1, …,
SJ+1) with S0 = 0 and project makespan SJ+1, or the finish
time of each activity, (f0, f1, …, fJ+1) with f0 = 0 and fJ+1
= SJ+1. Note that fj = Sj + dj for all j. A schedule S is fea-
sible if it satisfies both precedence and resource con-
straints at any execution time period. The objective of

 A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling 173

the RCPSP is to construct a near Pareto front for the pair
of objectives: minimizing (a) project makespan and (b)
total resource availability. The mathematical formulation
of the problem that refers to Herroelen et al. (1999) is
shown as follows.

Minimize (SJ+1,
1

K
k

k
R

=
∑)

Subject to
Si + di ≤ Sj for all arcs < i, j > ∈ A i = 0, …, J+1

()

k
ik

i S t

r R
∈

≤∑ for k = 1, …, K t = 1, …, T

where S(t) is the set of activities in progress during

time period [t-1, t] and T is an upper bound on the project
makespan.

Figure 1 displays a project example with one re-
source type and eight activities, which are represented by
nodes 1 to 8. Node 0 denotes the starting event whereas
node 9 the ending event. Both are dummy nodes with
zero duration and resource usage. In this example, r11 = 2,
d1 = 3 and we will assume that R1 = 4.

0

1

3

52

6
8

7
4

9

(3, 2) (2 , 1)

(2 , 3)

(1 1)

(4 , 2)

(1 , 3)

(4 , 2)

(2 , 2)

(duration , resource)

Figure 1. A project with one resource type.

3. PROBLEM SOLVING METHODS

In an acyclic directed network, there exists a topo-
logical ordering on nodes such that no node is numbered
smaller than any of its predecessors. An activity list (AL)
is a sequence of the activities that follows the prece-
dence constraints. There are two methods to decode an
AL as a project schedule: one is serial schedule genera-
tion scheme (S-SGS), and the other is parallel schedule
generation scheme (P-SGS). The former will produce an
active schedule, whereas the latter will produce a non-
delay schedule. It is well known that optimal schedules
must be active schedules, which include non-delay sche-
dules. In our algorithm, S-SGS is used for decoding AL.

In order to construct a near Pareto front based on
the two objectives mentioned in section 2, the paper
proposes the framework as shown in Algorithm Main
Framework, in which an algorithm for solving the
RCPSP with the objective of minimizing makespan can
be repeatedly employed.

Algorithm Main Framework:
Step 1: Employ the critical path method (CPM) to

find the minimum makespan ,CPMT as well
as the quantity consumed of each resource
type corresponding to the CPM schedule,
(1

max ,R …, max
KR). Compute the maximum

total quantity of resource from the CPM
schedule: MaxRsum = 1

maxR + … + max ,KR as
well as the minimum total quantity of re-
source required for executing every activity,
MinRsum = 1

minR + … + min ,KR where min
kR

is the minimum quantity required of re-
source type k to implement all activities,
i.e., min

kR = Max{rjk | j = 1, …, J}.
Step 2: Select randomly one of resource types from

{1, … , K} and decrease its available
amount by one unit. If this type has been
consecutively chosen for four times, give
up the choice and begin another selection.
Whenever a resource type k has declined to
its minimum amount min

kR , remove type k
from the candidate list.

Step 3: Employ an efficient algorithm to find the
minimum or a near minimum makespan of
the RCPSP with the resource availability
obtained in Step 2.

Step 4: If all resource types have reached its mini-
mum required amount, go to Step 5; other-
wise, go to Step 2.

Step 5: Construct the near Pareto front by compar-
ing all the best solutions obtained.

In Step 3, five algorithms are applied to solve the

RCPSP with minimum makespan: (1) Combining multi-
ple pass method (Boctor, 1990) with parameterized re-
gret-based biased random sampling (Kolisch and Drexl,
1996), denoted as (MP-RBRS); (2) Genetic local search
(GLS); (3) Particle swarm optimization with local se-
arch (PSO-LS); (4) Scatter search (SS); (5) Population
learning algorithm (PLA). All five algorithms are simi-
lar in structure to those that have been used in the litera-
ture. The PLA was originally introduced by Jedrze-
jowicz (1999). Based on the PLA concept, we have de-
vised a PLA covering the first four aforementioned algo-
rithms in the evolutionary stages.

In the framework, whenever the total quantity of
resource is reduced by one unit, the selected algorithm
computes five thousand solutions (in Step 3) to find a
near-optimal makespan. The five algorithms are described
below.

3.1 Multi-pass regret biased random sampling
(MP-RBRS)

In this algorithm, five priority rules are used: shortest

174 Ying-Chieh Fang·Chiuh-Cheng Chyu

process time (SPT), minimum slack time (MST), earliest
start time (EST), earliest finish time (EFT), and latest
finish time (LFT). At each step, one of the five rules is
firstly chosen at random. Then the RBRS scheme based
on the selected priority rule is applied to choose an activ-
ity from the candidate list. The same procedure is re-
peated until an AL has been attained. Afterwards, the se-
rial schedule generation scheme (S-SGS) is employed to
decode this AL to an active schedule, and then the FBI
(forward/backward improvement) is applied to refine this
schedule (see Figures 1 and 4~5 for examples). The MP-
RBRS algorithm computes five thousand solutions and
return with the best one. The following describes the
RBRS procedure:

Let D be the candidate list of activities at the current
step. The regret value (ρi) for each activity i in D com-
pares the priority value of activity i, v(i), with the worst
priority value v(j) of the activities of D and is calculated
as follows:

ρi = max{v(j) | j∈D} – v(i), and the parameterised
probability (φi) is calculated as follows:

φi =
() ,

()
i

jj D

ρ ε
ρ ε

∈

+
+∑

 (1)

whereεis a predetermined parameter value.

3.2 Genetic local search (GLS)

The GLS adopts an elitist strategy to maintain good
quality solutions in each generation. In this algorithm,
roulette wheel is used for reproduction, one point cross-
over for producing offspring, two-swap operation for
mutation, and the FBI for further improvement. Valls et
al. (2005) and Kolisch, and Hartmann (2006) have shown
that the FBI is the most effective local search in the pro-
ject scheduling problem with makespan minimization
objective. Our GLS also adopts the FBI to refine a new
GA solution, but the means to perform one point cross-
over and two-swap mutation is different from those by
Alcaraz et al. (2004) and Valls et al. (2005). Figure 2
illustrates our mutation using Figure 1. A mutation con-
sists of four steps: (1) Convert an AL to a weight list
(WL), where the weight of an activity is the list order of

the activity in the AL; (2) Randomly select two positions
in the WL and swap their weights; in the example,
weights of activities 2 and 7 are swapped; (3) Convert
the WL to AL based on precedence and weights. The
one point crossover also applies the conversion process.

The algorithm terminates when five thousand solu-
tions have been attained. The population size is set to 50,
the crossover rate is 0.9, and the mutation rate is 0.1.

3.3 Particle swarm optimization with local search
(PSO-LS)

Kennedy and Eberhart (1995) proposed PSO, which
was inspired by the choreography of a bird flock. The
idea of this approach is to simulate the movement of a
group (or population) of birds which aim to find food.
This approach can be viewed as a distributed behavioral
algorithm that performs multidirectional search. In the
proposed algorithm, a particle P[i] is a random key list
(RKL), which is a representation of a project schedule.
An RKL can be converted to an AL and then the AL is
decoded as an active project schedule through the S-
SGS. Figures 3 to 6 depict the evaluation process of a
particle P[i] using the Figure 1 example. Figure 3 shows
the converting process from an RKL to an AL. Figure 4
presents the project schedule corresponding to the AL
via S-SGS. Figure 5 shows the FBI procedure. Figure 6
presents a better quality RKL which is obtained by reor-
dering the random key numbers according to the starting
times of the FBI schedule in increasing order.

Our PSO is different in that it applies the FBI local
search. Zhang et al. (2005) employed PSO to solve RC
PSP using continuous and discrete solution representa-
tion schemes, particle-representation priority and parti-
cle-representation permutation. The two schemes func-
tion similarly to RKL and AL. The population size
adopted is equal to the number of non-dummy activities
in the project. Kemmoé Tchomté and Gourgand (2009)
proposed a particle displacement PSO and applied its
discrete version to solve RCPSP using left- and right-
shift local search.

For PSO with continuous representation scheme,
the acceleration coefficients, c1 and c2, are typically set
to a value of 2.0 (Eberhart et al., 1996). Suganthan (1999)
has shown that setting c1 ≠ c2 can lead to improved per-
formance. In our PSO, we tested c1 and c2 near 2.0, and
obtained c1 = 2.0 and c2 = 2.1. The population size is set
to a constant of 30 for the benchmark instances, which
consist of 30 and 60 activities. The inertia weight, w, is
set to 0.3 based on several test results.

Figure 3. Converting RKL to AL.

2 1 5 4 7 3 6 8
1 8765432

Activity AL

2 1 6 4 3 7 5 8
1 8765432

Weight
Activity

2 5 6 4 3 7 1 8
1 8765432

Weight
Activity

1 4 7 2 5 3 6 8
1 8765432

Activity AL

List order(a)

(b)

(c)

(d) List order

WL

WL

Figure 2. An example of mutation.

 A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling 175

1
2
3
4

2

1 2 3 4 5 6

1

7 8 9

5

4 73

6 8

10 11 12 13 14
Figure 4. Project schedule corresponding to AL in Fig. 2.

1
2
3
4

2

1 2 3 4 5 6

1

7 8 9

5

4 7 6 8

10 11 12 13 14

3

1
2
3
4

2

1 2 3 4 5 6

1

7 8 9

5

4 7

6 8

10 11 12 13

3

Forward pass

Backward pass
Figure 5. FBI procedure.

2.56 6.233.724.333.682.952.431.11
1 6 7 8532 4Random key

list
Figure 6. RKL of the schedule after FBI.

PSO-LS algorithm
Step 0: Set population size M = 30; initialize the

speed of particle i, V[i] = 0; initial weight w
= 0.3; two constants c1 = 2, c2 = 2.1;

Step 1: For i = 1 to M
Randomly generate a particle P[i];
Evaluate P[i] (apply converting process to
obtain a schedule);
End for
GLbest = PObest = Best{P[i]: i = 1, …, M}

Step 2: Repeat the following procedure until 5000
solutions have been attained.
Begin
For i = 1 to M
V[i] = []w V i⋅ + 1 1c B⋅ ⋅ (PObest – P[i])
 + 2 2c B⋅ ⋅ (GLbest – P[i]);
(Calculate speed of each particle, w = Inertial
weight, B1 and B2 are random numbers in [0,
1])
P [i] = P[i] + V[i]; Evaluate P[i];

If P[i] is better than PObest, then PObest =
P[i];
If PObest is better than GLbest,
 then GLbest = PObest;
 End For
End (Begin).

3.4 Scatter search

Scatter search (SS), proposed by Glover (1977, 2003),
is a population-based heuristic that has shown great po-
tential for solving many hard combinatorial optimization
problems, such as RCPSP and its variants (Debel et al.
2006; Yamashita et al., 2006), and capacitated facility lo-
cation problems (Keskin and Üster, 2007). The funda-
mental concepts and principles are presented in Martı’ et
al. (2006). We develop a looping framework that uses
scatter search with hybrid improvements, including FBI
local search and path-relinking routines for the make/
resource trade-offs project scheduling. Each scatter search
iteration calculates five thousand solutions.

A scatter search consists of five components: diversi-
fication generation, improvement, reference -set update,
solution recombination, and subset generation. In our
algorithm, the reference set size is set to 10 and consists
of two types of solutions: quality and diversity. We tested
three combinations of solution types: 8:2, 7:3, and 6:4.
The results indicate that the ratio, 7:3, is the most appro-
priate. For subset generation method, we consider all pair
combinations, which are 45 pairs. To perform solution
recombination for each pair, we adopt three-stage path-
relinking. In each stage, we randomly choose one-fourth
of positions, convert AL to WL, swap the weights, and
convert WL back to AL. The best solution found in this
stage is improved by FBI. Meanwhile, the resulting 45
solution pairs in each stage will become the parent solu-
tion pairs for the next stage. Furthermore, the distance
between two solutions x and y is defined as the number of
positions of different activities in the corresponding two
ALs. The diversity metric of a solution x is defined as the
smallest distance from the seven quality solutions in the
reference set.

The scatter search used in the study is described as
follows:

Step 1: Randomly generate 500 Activity lists. Select

seven best quality solutions and three most
diverse solutions into the reference set.

Step 2: Perform subset combination.
Step 3: For every pair combination, perform three-

stage solution recombination; perform FBI
for each pair of solutions at the end of last
stage.

Step 4: If termination condition is not satisfied, update
the reference set and go to Step 2; otherwise,
terminate the algorithm.

176 Ying-Chieh Fang·Chiuh-Cheng Chyu

3.5 Population learning algorithm (PLA)

PLA was originally introduced by Jedrzejowicz
(1999). The PLA is a population-based method inspired
by analogies to a phenomenon of social education process
in which a diminishing number of individuals enter more
and more advanced learning stages. It possesses the fol-
lowing characteristics: (1) A huge number of individuals
enter the system, (2) Individuals learn through organized
environment as well as self study, (3) Learning processes
is inherently parallel (different learning environments), (4)
Learning process is divided into stages, (5) More ad-
vanced stages are entered by a diminishing number of
individuals from the initial population, (6) At higher stage
more advanced learning and improvement techniques are
used, and (7) A final stage is reached by only a fraction of
the initial population.

The proposed PLA consists of an initial stage and
three learning stages:

• In the initial stage, RBRS-MP is employed to gen-

erate a large number of diversified individuals. Se-
lect the best half of individuals in the population
and enter the first stage.

• The learning process in the first stage adopts an
elitist hybrid evolutionary algorithm (HEA). At
each generation step, 70% of individuals are pro-
duced using single point crossover, 20% of indi-
viduals using 2-swap mutations, and 10% of indi-
viduals using the bidirectional planning heuristic
(Kiein, 2000). The implementation of one bidirec-
tional planning procedure requires taking two in-
dividuals from the parent population. All offspring
produced in this generation and all individuals in
the parent population will compete for the mem-
berships of the next population. Select a fraction
of individuals in the final population to enter the
second stage.

• In the second stage, PSO-LS is used as an ad-
vanced learning tool. It should be noticed that be-
fore applying this algorithm, all individuals of the
initial population coming from the second stage
must be converted into random key representa-
tions.

• In the final stage, scatter search (SS; Glover and
Kochenberge, 2003; Laguna and Glover, 2006; Ya-
mashita and Armentano, 2006) is applied. The ref-
erence set consists of four high quality solutions
and one diverse solution. The first reference set
takes the best four solutions and the most diversi-
fied solution from the final population at the sec-
ond stage. To find a most diversified solution, we
define the distance measure between two indi-
viduals as

D(RKLi, RKLk) =

1
| RKL [] RKL [] |,

J

i k
j

j j
=

−∑

and we define the diversity measure of an RKL as Div =

{ (RKL, RKL) | }qMin D q Q∈ , where Q is the set of quality
solutions in the reference set. A most diversified solution
in a group is the RKL that has the maximum value of Div.

The other elements of the SS used in this stage are
described below.

(a) Two-element subset generation method. This method

will generate a total of 10 pairs of RKLs. For
each pair, the RKL with higher quality will serve
as the initiating solution and the other as the
guiding solution.

(b) Path re-linking solution recombination method.
An iteration of solution recombination method
produces four offspring. Let x and y be the initi-
ating solution and guiding solution, respectively.
To produce the first offspring, one-fourth of po-
sitions in x are randomly chosen and these ran-
dom key numbers are replaced with those in the
same positions in y. Denote the new RKL as x1.
The same procedure is applied to x1 and y to
produce the second offspring x2, and so on. The
best schedule among the four RKLs will be fur-
ther refined by the FBI procedure, and the re-
sulting solution will be converted back to RKL,
which will be used to update the reference set.

Since all four algorithms are effective in solving the

RCPSP, our order of matching the PLA algorithm in sta-
ges is primary based on the suitable population size for
each algorithm. We observed in the literature that the rank
of population sizes commonly adopted is HEA, PSO-LS,
and SS. The RBRS-MP is suitable for generating a large
number of diverse and quality solutions. In SS, the size of
reference set is small due to the fact that a reference set
will generate a considerable number of solutions in two-
element subset generation procedure and path re-linking
solution recombination procedure. These two procedures
can be viewed as intensive local search or advanced
learning procedure. In the PLA, the output solutions of
each stage are screened and selected as the input for the
next stage. The number of solutions distributed to the four
stages are 100, 2000, 2000, and 900, respectively.

4. EXPERIMENTAL RESULTS

In this section, the performances of the proposed al-
gorithms for the discrete makespan/cost tradeoffs RCPSP
are evaluated and then compared against each other via
two sets of benchmark instances, each of which was
drawn from PSPLIB with resource strength (RS) equal to
0.5. The following performance metrics are used: (1) C
measure for pair-wise comparison, (2) Error rate (ER),
Generational distance (GD), and Overall non-dominated
vector generation rate (ONVGR) for measurement of
convergence or proximity, and (3) Spread for measure-
ment of diversity. Set 1 contains four instances, each of
which has 30 activities, four resource types, and network

 A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling 177

complexity (NC) of 2.1; that is, each activity has an aver-
age of 2.1 successors. In addition, the resource factors
(RF) of the four instances are 0.25, 0.5, 0.75, 1.0, which
are denoted as j30_1 to j30_4, respectively. The RF refers
to the fraction of resource types used by each activity in a
project. For example, RF = 0.5 means that each activity
consumes two resource types. Set 2 contains four in-
stances of 60 activities with the same problem parameter
values as in Set 1. All algorithms were coded in Borland
C++Builder 6, and tested on a computer with Intel core
dual, 1.86GHz and 2 Giga bytes DDR667. Table 1 dis-
plays the computation times of the algorithms on each
instance. The SS based algorithm takes longer times than
the others. Such a result is likely due to the update proc-
ess for the diverse solutions in the reference set.

Table 1. Computation times of algorithms.

 Computation times(in seconds)

algorithm j30_1 j30_2 j30_3 j30_4 j60_1 j60_2 j60_3 j60_4

PLA 7.63 8.94 10.25 10.31 36.74 39.64 42.54 45.25

GLS 7.05 7.36 7.69 7.38 31.13 31.81 31.86 32.53

PSO-LS 8.32 8.65 8.65 8.98 38.87 38.88 38.92 39.59

MP-RBRS 5.76 5.78 6.09 6.40 23.89 24.17 24.35 24.71

SS 8.77 10.73 11.79 12.51 40.78 44.79 55.72 57.12

In the absence of any known true Pareto-front, we

computed reference set as non-dominated solutions from
the combination of all the five solution sets produced by
PLA, MP-RBRS, GLS, PSO-LS, and SS. The performances
of these algorithms based on the metrics are presented as
follows.

4.1 Pair-wise Comparison

C measure (Zitzler and Thiele, 1999) compares two
sets directly and indicates coverage of one set over an-
other. It does not require any reference points to compute
the measure and hence, is not sensitive to any external
input. Let A and B be the non-dominated solutions sets
computed by algorithms PA and PB, respectively. The
measure C(PA, PB) maps the ordered pair (A, B) to the
interval [0, 1], is given by

| : |(,) ,
| |A B

b B a A a bC P P
B

∈ ∃ ∈ ∋= ≺ (2)

where a b≺ means that solution a is not dominated
by b. If C(PA, PB) equals 1, it would imply that all
representative solutions found by algorithm PB are
covered by those found by algorithm PA. In other words,
algorithm PB does not produce any solution that is neither
dominated nor the same as any solution produced by PA.
Table 2 displays the pair-wise comparison results for the
eight instances. Apparently, the PLA outperforms the
others in this measure, and the GLS ranks second when
performance is viewed on all instances. On the other hand,

the PSO underperforms the others. This may be due to the
fact that the feature of PSO and the RKL is suitable for
continuous objective functions. There are many RKLs
corresponding to one AL, which will make solution
search ineffective.

Table 2. C measure on the four algorithms(in %).

J30_1 J60_1 C (Prow,
Pcolumn) PLA GLS PSO-

LS
MP-

RBRS SS PLA GLS PSO-
LS

MP-
RBRS SS

PLA ＼ 0.00 0.00 0.00 0.00 ＼ 0.50 0.20 0.36 0.40

GLS 1.00 ＼ 0.20 0.50 0.25 0.60 ＼ 0.20 0.36 0.50

PSO-LS 1.00 0.50 ＼ 1.00 0.50 0.80 0.83 ＼ 0.64 0.60

MP-RBRS 0.67 0.25 0.00 ＼ 0.25 0.60 0.75 0.40 ＼ 0.30

SS 1.00 0.75 0.40 0.50 ＼ 0.60 0.58 0.40 0.64 ＼

J30_2 J60_2
C measure

PLA GLS PSO-
LS

MP-
RBRS SS PLA GLS PSO-

LS
MP-

RBRS SS

PLA ＼ 0.36 0.09 0.10 0.10 ＼ 0.74 0.39 0.05 0.24

GLS 0.25 ＼ 0.00 0.10 0.00 0.14 ＼ 0.06 0.57 0.10

PSO-LS 0.88 1.00 ＼ 0.50 0.50 0.59 0.90 ＼ 0.86 0.38

MP-RBRS 0.75 0.73 0.27 ＼ 0.30 0.90 0.39 0.06 ＼ 0.10

SS 0.88 1.00 0.36 0.50 ＼ 0.64 0.84 0.33 0.86 ＼

J30_3 J60_3
C measure

PLA GLS PSO-
LS

MP-
RBRS SS PLA GLS PSO-

LS
MP-

RBRS SS

PLA ＼ 0.00 0.43 0.53 0.61 ＼ 0.06 0.28 0.38 0.31

GLS 1.00 ＼ 0.00 0.00 0.00 0.90 ＼ 0.22 0.09 0.37

PSO-LS 0.56 1.00 ＼ 0.33 0.22 0.61 0.60 ＼ 0.35 0.57

MP-RBRS 0.39 0.95 0.48 ＼ 0.28 0.50 0.83 0.53 ＼ 0.60

SS 0.39 1.00 0.52 0.53 ＼ 0.67 0.48 0.31 0.29 ＼

J30_4 J60_4
C measure

PLA GLS PSO-
LS

MP-
RBRS SS PLA GLS PSO-

LS
MP-

RBRS SS

PLA ＼ 0.15 0.15 0.00 0.12 ＼ 0.05 0.07 0.30 0.10

GLS 0.88 ＼ 0.44 0.41 0.44 0.89 ＼ 0.00 0.02 0.08

PSO-LS 0.88 0.64 ＼ 0.44 0.69 0.88 1.00 ＼ 0.81 0.51

MP-RBRS 1.00 0.56 0.48 ＼ 0.63 0.63 0.95 0.20 ＼ 0.13

SS 0.81 0.36 0.16 0.30 ＼ 0.90 0.97 0.41 0.84 ＼

4.2 Convergence Measure

Three metrics are proposed to measure the closeness
of a solution set to a Pareto set or a reference set.

The first metric is error ratio (ER), proposed by
Veldhuizen (1999). It is defined as the ratio of the number
of solutions not contained in the global reference set over
the number of representative solutions found by the algo-
rithm. The drawback of this measure is that it will not
reflect a true performance when the reference set is not
large and dense enough. The second metric is overall
non-dominated vector generation ratio (ONVGR; Van
Veldhuizen, 1999), which is similar to the first one, ex-
cept that the denumerator is replaced with the number of
solutions in the reference set. The third one is genera-

178 Ying-Chieh Fang·Chiuh-Cheng Chyu

tional distance (GD; Deb, 2002), which is defined as fol-
lows:

GD(A) =

| |

1

| |

A

i
i

h

A
=
∑

, where (3)

22
| *|

1 max min
1

i j
P k k

i j
k k k

g gh Min
g g=

=

⎛ ⎞−= ⎜ ⎟−⎝ ⎠
∑ (4)

In the above mathematical expressions, A is the rep-
resentative solution set found by a proposed algorithm,

max
kg and

min
kg are the maximum and minimum function

values, respectively, of the kth objective function in the
reference set P*. Here, max

2g is the sum of maximum re-
source usage and min

1g is the makespan corresponding to
the CPM schedule, respectively; min

2g is the sum of mi-
nimum required units of each resource type; max

1g is the
best makespan of the minimum resource availability pro-
blem, found by the four proposed heuristics based on five
solutions.

Table 3. Convergence performance of the algorithms.

 j30_1 (RF = 0.25) j60_1 (RF = 0.25)

algorithm ER ONVGR GD ER ONVGR GD

PLA 0.6 0.5 0.0427 0.3 0.7 0.00302

GLS 0.75 0.25 0.0264 0.917 0.1 0.0249

PSO-LS 1 0 0.0657 0.7 0.3 0.0187

MP-RBRS 1 0 0.0822 0.818 0.2 0.0193

SS 0.5 0.5 0.0196 0.6 0.4 0.0206

 j30_2 (RF = 0.50) j60_2 (RF = 0.50)

algorithm ER ONVGR GD ER ONVGR GD

PLA 0.273 0.615 0.00388 0.444 0.357 0.00491

GLS 1 0 0.0423 0.968 0.0357 0.0164

PSO-LS 0.875 0.0769 0.0281 0.682 0.25 0.00521

MP-RBRS 0.7 0.231 0.0103 0.905 0.0714 0.0152

SS 0.8 0.154 0.00817 0.476 0.393 0.00515

 j30_3 (RF = 0.75) j60_3 (RF = 0.75)

algorithm ER ONVGR GD ER ONVGR GD

PLA 0.667 0.273 0.00792 0 1 0

GLS 1 0 0.0344 1 0 0.00804

PSO-LS 0.714 0.273 0.0119 1 0 0.00568

MP-RBRS 0.667 0.227 0.0183 0.974 0.0333 0.0078

SS 0.556 0.364 0.0172 0.906 0.1 0.00459

 j30_4 (RF = 1.0) j60_4 (RF = 1.0)

algorithm ER ONVGR GD ER ONVGR GD

PLA 0.385 0.696 0.00335 0.409 0.565 0.00241

GLS 0.88 0.13 0.00774 1 0 0.016

PSO-LS 0.88 0.13 0.00677 0.951 0.0435 0.00689

MP-RBRS 1 0 0.00761 0.977 0.0217 0.00462

SS 0.875 0.087 0.0133 0.513 0.413 0.00252

Our experimental findings indicate that the number
of reference solutions are significantly influenced by
problem size and RF; for instance, the number of refer-
ence solutions are 4, 14, 20 and 10, 22, 39 for 30-activity
and 60-activity instances with RF = 0.25, 0.50, 0.75, 1,
respectively. Similar results are observed in the number
of representative solutions obtained by each algorithm.

The convergence measures of the five algorithms are
given in Table 3. Clearly, PLA excels in ER and ONVGR
measures for all instances, and the discrepancy becomes
more pronounced as RF and problem size increase. Algo-
rithm SS ranks second in these two performance metrics.
As for GD metric, PLA on the whole yields the best per-
formance for large RF and problem sizes, followed by SS,
PSO-LS and MP-RBRS, and finally GLS. The PLA pro-
vides a flexible design that integrates various types of
algorithms, and utilizes their advantages. Our experimen-
tal results have shown the superiority of the PLA’s hybrid
structure.

4.3 Diversity Measure

Diversity is another important characteristic for mea-
suring the quality of a nondominated solution set. One
popular measure for diversity is spread (Deb, 2001), which
calculates a relative distance between consecutive repre-
sentative (nondominated) solutions. It takes care of the
extent of the spread also and requires a reference set P* to
compute the measure. Mathematically, it may be ex-
pressed as:

Spread (A) =
22

| *|
1 max min

1

i j
P k k

i j
k k k

g gh Min
g g=

=

⎛ ⎞−= ⎜ ⎟−⎝ ⎠
∑ (5)

where ih is the distance between two consecutive
solutions, h is the mean of all ih ’s, e

mh is the distance
between the extreme solutions of P* and A corresponding
to the mth objective function. The value of this measure is
zero for an ideal distribution of solution set but it can be
more than 1 as well for a bad distribution of solution set.
Table 4 presents the spread measure of the five algo-
rithms. It shows that the diversity of the solutions ob-
tained by the five algorithms does not substantially devi-
ate from each other. However, GLS appears to perform
better than the others for the 60-activity instances.

Table 4. Spread measure of the algorithms.

 Spread

algorithm j30_1 j30_2 j30_3 j30_4 j60_1 j60_2 j60_3 j60_4

PLA 0.455 0.448 0.488 0.352 0.837 0.679 0.708 0.678

GLS 0.216 0.788 0.564 0.402 0.657 0.713 0.68 0.582

PSO-LS 0.622 0.624 0.538 0.393 0.778 0.815 0.66 0.678

MP-RBRS 0.359 0.421 0.601 0.398 0.688 0.69 0.726 0.702

SS 0.423 0.334 0.475 0.554 0.766 0.841 0.766 0.622

 A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling 179

5. CONCLUSIONS AND FUTURE
RESEARCH

This paper studies the discrete makespan/resource
tradeoffs RCPSP with an aim to provide the project man-
agement with a set of competitive alternatives when ne-
gotiating projects with clients. The problem solving ap-
proach comprises two phases: (1) construct a main algo-
rithm framework, and (2) select an algorithm that will
work efficiently and effectively under this framework.
Five algorithms are developed to solve the RCPSP with
the objective of minimizing project makespan. An ex-
periment was conducted to test which composite algo-
rithm will provide the most satisfactory result to the pro-
ject management. The experimental results show that the
new hybrid approach, population learning algorithm, per-
forms better than the other three algorithms, particle swarm
optimization, genetic local search, regret-based biased ran-
dom sampling multi-pass, in terms of pair-wise compari-
son as well as convergence measure. However, the spread
metric does not reveal any significant difference in diver-
sity between the four algorithms.

This study is focused on developing a promising al-
gorithm for solving the single-mode makespan/resource
tradeoffs RCPSP. A more attractive research work would
be to extend the current study to a multi-mode case; i.e.,
each activity has two or more execution options due to
resource/resource and resource/duration tradeoffs. Such
problems, regardless of whether the resource types are
discrete, continuous, or mixed, are much more challeng-
ing and useful in practice.

ACKNOWLEDGMENT

This research was supported by the National Science
Council in Taiwan under grant NSC 95-2221-E-155-045.

REFERENCES

Alcaraz, J. and Maroto, C. (2001), A Robust Genetic Al-
gorithm for Resource Allocation in Project Schedul-
ing, Annals of Operations Research, 102, 83-109.

Blazewicz, J., Lenstra, J. K., and Rinooy Kan, A. H. G.
(1983), Scheduling subject to resource constraints:
Classification and complexity, Discrete Mathematics,
5, 11-24.

Boctor, F. F. (1990), Some efficient multi-heuristic pro-
cedures for resource-constrained project scheduling,
European Journal of Operational Research, 49, 3-13.

Deb, K. (2001), Multi-objective optimization using evolu-
tionary algorithm, Wiley, Chichester, 328.

Deb, K. and Jain, S. (2002), Running performance met-
rics for evolutionary multiobjective optimization,
Asia-Pacific Conference Simulated Evolution and
Learning (SEAL 01), Singapore, 12-20.

Debels, D., Reyck, B. D., Leus, R., and Vanhoucke, M.

(2006), A hybrid scatter search/electromagnetism
meta-heuristic for project scheduling, European Jo-
urnal of Operational Research, 169, 638-653.

Demeulemeester, E. L. and Herroelen, W. S. (2002), Pro-
ject scheduling: A research handbook, Norwell, MA:
Kluwer, 8.

Eberhart, R. C., Simpson, P., and Dobbins, R. (1996),
Computational Intelligence PC Tools, Academic
Press Professional, 212-226.

Erenguc, S. S. and Icmeli-Tukel, O. (1999), Integrating
quality as a measure of performance in resource-
constrained project scheduling problems, edited by
Jan Weglarz, Project Scheduling: Recent Models,
Algorithms and Applications, Kluwer Academic Pu-
blishers, USA, 433-450.

Erenguc, S. S., Ahn, T., and Conway, D. G. (2001), The
resource constrained project scheduling problem
with multiple crashable modes: An exact solution
method, Naval Research Logistics, 48, 107-127.

Glover, F. (1977), Heuristics for integer programming
using surrogate constraints, Decision Sciences, 8,
156-166.

Glover, F. and Kochenberge, G. A. (2003), Handbook of
Metaheuristics, editors, Kochenberge, Kluwer Aca-
demic Publishers.

Herroelen, W., Demeulemeester, E. and De Reyck, B.
(1999), A classification scheme for project schedul-
ing, edited by J. Weglarz, Project Scheduling: Re-
cent Models, Algorithms and Applications, Acade-
mic Publishers, USA, 1-26.

Hsu, C. C. and Kim, D. S. (2005), A new heuristic for the
multi-mode resource investment problem, Journal of
the Operational Research Society, 56, 406-413.

Jedrzejowicz, P. (1999), Social learning algorithm as a
tool for solving some different scheduling problems,
Foundation of Computing and Decision Science,
24(2), 51-66.

Jedrzejowicz, P. and Ratajczak, E. (2006), Population le-
arning algorithm for the resource-constrained project
scheduling, Perspectives in Modern Project Schedul-
ing, edited by J. Józefowska and J. Weglarz, Sprin-
ger’s International Series.

Józefowska, J., Mika, M., Rózycki, R, Waligóra, G. and
Węglarz, J. (1998), Local search metaheuristics for
discrete-continuous schedulingproblems, European
Journal of Operational Research, 107, 354-370.

Keskin, B. B. and Uster, H. (2007), A scatter search-
based heuristic to locate capacitated transhipment
points, Computers and Operations Research, 34,
3112-3125.

Kennedy, J. and Eberhart, R. C. (1995), Particle swarm
optimization, In Proceedings of the 1995 IEEE In-
ternational Conference on Neural Networks, Pis-
cataway, New Jersey, IEEE Service Center, 1942-
1948.

Kemmoé Tchomté, S. and Gourgand, M. (2009), Particle
swarm optimization: A study of particle displace-
ment for solving continuous and combinatorial op-
timization problems, International Journal of Pro-

180 Ying-Chieh Fang·Chiuh-Cheng Chyu

duction Economics, doi:10.1016/j.ijpe.2008.03.015.
Klein, R. (2000), Bidirectional planning: improving prior-

ity rule-based heuristics for scheduling resource-
constrained projects, European Journal of Opera-
tional Research, 127, 619-638.

Kolisch, R. and Drexl, A. (1996), Serial and parallel re-
source-constrained project scheduling methods re-
visited: Theory and computation, European Journal
of Operational Research, 90, 320-333.

Kolisch, R. and Hartmann, S. (2006), Experimental eva-
luation of state-of-the-art heuristics for the resource-
constrained project scheduling: An update, European
Journal of Operational Research, 174, 23-37.

Kolisch, R. and Sprecher, A. (1996), PSPLIB-A project
scheduling problem library, European Journal of
Operational Research, 96, 205-216.

Li, K. Y. and Willis, R. J. (1992), An iterative scheduling
technique for resource-constrained project schedul-
ing, European Journal of Operational Research, 56,
370-379.

Marti, R., Laguna, M., and Glover, F. (2006), Principle of
scatter search, European Journal of Operational Re-
search, 169, 359-372.

Suganthan, P. N. (1999), Particle swarm optimizer with
neighbourhood operator, in Proceedings of the Con-
gress on Evolutionary Computation, (Washington
DC, USA), IEEE Service Center, Piscataway, NJ,
1958-1961.

Tormos, P. and Lova, A. (2003), An efficient multi-pass
heuristic for project scheduling with constrained re-
sources, International Journal of Production Re-

search, 41(5), 1071-1086.
Valls, V., Ballestin, F., and Quintanilla, S. (2005), Justifi-

cation and RCPSP: A technique that pays, European
Journal of Operational Research, 165, 375-386.

Van Veldhuizen, D. A. (1999), Multiobjective evolution-
ary algorithms: classifications, analyses, and new In-
novations, PhD thesis, Department of Electrical and
Computer Engineering, Graduate School of Engi-
neering, Air Force Institute of Technology, Wri-ght-
Patterson AFB, Ohio.

Vanhoucke, M., Demeulemeester, E., and Herroelen, W.
(2002), Discrete time/cost trade-offs in project sche-
duling with time-switch constraints, Journal of the
Operational Research Society, 53(7), 741-751.

Waligóra, G. (2008), Discrete-continuous project sched-
uling with discounted cash flow-A tabu search ap-
proach, Computers and Operations Research, 35,
2141-2153.

Yamashita, D. S., Armentano, V. A., and Laguna M.
(2006), Scatter search for project scheduling with re-
source availability cost, European Journal of Opera-
tional Research, 169, 623-637.

Zitzler, E. and Thiele, L. (1999), Multiobjective evolu-
tionary algorithms: a comparative case study and the
strength pareto approach, IEEE Transactions on Evo-
lutionary Computation, 3(4), 257-271.

Zhang, H., Li, X., Li, H., and Hung, F. (2005), Particle
swarm optimization-based schemes for resource-
constrained project scheduling, Automation in Con-
struction, 14, 393-404.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

