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Abstract. The problem of scheduling in permutation flowshops has been extensively investigated by many 
researchers. Recently, attempts are being made to consider more than one objective simultaneously and develop 
algorithms to obtain a set of Pareto-optimal solutions. Varadharajan et al. (2005) presented a multi-objective 
simulated-annealing algorithm (MOSA) for the problem of permutation-flowshop scheduling with the objectives 
of minimizing the makespan and the total flowtime of jobs. The MOSA uses two initial sequences obtained using 
heuristics, and seeks to obtain non-dominated solutions through the implementation of a probability function, 
which probabilistically selects the objective of minimizing either the makespan or the total flowtime of jobs. In 
this paper, the same problem of heuristically developing non-dominated sequences is considered. We propose an 
effective heuristics based on simulated annealing (SA), in which the weighted sum of the makespan and the total 
flowtime is used. The essences of the heuristics are in selecting the initial sequence, setting the weight and 
generating a solution in the search process. Using a benchmark problem provided by Taillard (1993), which was 
used in the MOSA, these conditions are extracted in a large-scale experiment. The non-dominated sets obtained 
from the existing algorithms and the proposed heuristics are compared. It was found that the proposed heuristics 
drastically improved the performance of finding the non-dominated frontier. 
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1.  INTRODUCTION 

In production scheduling, it is often required to si-
multaneously optimize two or more objectives such as 
the makespan and the total flowtime; however, in gen-
eral, a solution that optimizes two or more objectives 
simultaneously does not exist. Consequently, attempts 
are being made to consider more than one objective si-
multaneously and develop algorithms to obtain a set of 
Pareto-optimal solutions. Ishibuchi and Murata (1998) 
transformed a multi-objective production scheduling 
problem into a single-objective problem by using a 
weighted sum of multi-objective functions, and pro-
posed a multi-objective genetic algorithm for setting up 

the weight at random in the search process. It is shown 
that the proposed method can calculate the Pareto-
optimal solutions. On the other hand, Ulungu et al. 
(1999) proposed a two-dimensional simulated-annealing 
(SA) algorithm that controls the search direction by se-
lecting temperatures independently for two objective 
functions. Moreover, Varadharajan et al. (2005) pro-
posed the multi-objective SA method (MOSA), which 
chooses one objective function randomly in a search 
process, and then, controls the search direction by this 
probability. It was shown that the performance of the 
proposed heuristic algorithm is higher than the conven-
tional methods.  

The term ‘simulated annealing’ appears in literature 
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by Kirkpatrick et al. (1983); however, the algorithm was 
developed by Metropolis et al. (1953). In the SA algo-
rithm, a current solution may be replaced with one of the 
neighbourhoods, even if it is not a better solution. The 
probability of accepting an inferior solution depends on 
the two solutions and a temperature parameter. The tem-
perature is effective for escaping from a local optimum 
and is gradually decreased in the search process; how-
ever, if the temperature is decreased too much, it loses 
its function. Therefore, the temperature setting has to be 
controlled very carefully.  

As a result of the experiments, we propose a modi-
fied SA method - a new algorithm in which the tempera-
ture is not decreased in the search process.  

The purpose of this research is to develop a highly 
efficient search algorithm in order to obtain a set of 
Pareto-optimal solutions for the permutation-flowshop 
scheduling problem with the objectives of minimizing the 
makespan and the total flowtime of jobs. The research is 
based on the SA method using 1) the neighbourhood 
structure, 2) the initial solution, 3) weight and tempera-
ture, and 4) the number of iterations and replications ana-
lysed using a benchmark problem of size ×jobs20(  

)20 machines by Taillard (1993). 

2.    TWO-OBJECTIVE PERMUTATION- 
FLOWSHOP SCHEDULING PROBLEM 

The problem of permutation-flowshop scheduling 
with the objectives of minimizing the makespan and the 
total flowtime of jobs is considered. The problem that 
develops efficient sequences x = (x1, x2, …, xn) of n jobs 
is formulated as a combinatorial optimization problem. 
For generality, we denote the makespan and the total 
flowtime of jobs yielded by a sequence x by f1(x) and 
f2(x), respectively. 

2.1 Pareto-Optimal Solution 

Sequence x is said to dominate sequence x* if  

*)()( xx sfsf ≤  for all s = 1, 2 
and 

( ) ( *)f fs s<x x  for at least one s. 

This research aims to find all non-dominated solu-
tions (Pareto-optimal solutions) of the two-objective 
optimization problems. 

2.2 Fitness Function 

When applying the SA method to a two-objective 
optimization problem, we employ the following weighted 
sum of the two objectives: makespan (f1) and total flow-
time (f2), as a fitness function of the sequence x:  

 
             (1) 

where w is the non-negative constant weight for the 
makespan and x0 is the initial sequence. The feature here 
is that each objective function is normalized by the initial 
value. 

3.  BASICS OF SA IMPLEMENTED IN THE 
CURRENT STUDY 

SA is a sophisticated random- optimization method 
and tackles the problem of getting trapped in a local 
optimum by tolerating deteriorating moves with small 
but positive probability.  

The basic SA algorithm employed in this paper is 
as follows: 
Step 1: Let x be the current sequence and x* be an al-

ternative candidate sequence.  
 If x* is at least as good as x with respect to the 
fitness function defined by Eq. (1): )(*)( xx FF ≤ , 
the candidate sequence x* is always preferred 
to x.   
 Otherwise, if )(*)( xx FF > , x* is accepted 
only with a probability determined by the fol-
lowing function  

 
        (2) 

 
The temperature parameter (c) is fixed throughout 

a search process. 
Step 2: If x* is selected, set x* to x. 
Step 3: Select a schedule x* from the neighbourhood 

N(x) of x, which is defined below. 
Step 4:  Go back to step 2 until the terminal condition 

is satisfied.   
  
The following three operations are well-known 

methods for generating a neighbourhood N(x) of a se-
quence x. In each of the following operations, two posi-
tions of the current sequence x are randomly chosen. 

 
(1) Exchange: Two elements xi and xj are exchanged. 
 
  x = [x1, …, xi, …, xj, …, xn], 
 
 
 x* = [x1, …, xj, …, xi, …, xn]. 
 
(2) Inversion: The order of the elements between 

positions i and j is reversed. 
 
 x = [x1, …, xi, xi+1…, xj-1, xj, …, xn], 
 
 x* = [x1, …, xj, xj-1…, xi+1, xi, …, xn]. 
 
(3) Shift: The order of the elements between posi-

tions i and j is shifted by one to the left or the 
right in a rotational manner as follows. 
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(3-1) Left shift 
     

 x = [x1, …, xi, xi+1, …, xj, …, xn], 
  
 x* = [x1, …, xj-1, …, xj, xi, …, xn]. 
 
(3-2) Right shift 

  
 x = [x1, …, xi, xi+1, …, xj, …, xn], 
  
 x*= [x1, …, xj, xi, …, xj-1, …, xn]. 

4.  SET OF PARETO-OPTIMAL  
SOLUTIONS OBTAINED FOR  
PROBLEM 1 OF SIZE (20×20) GIVEN 
BY TAILLARD (1993) 

The Pareto-optimal solutions for problem 1 of size 
)2020( ×  given by Taillard (1993), which were obtained 

by an exact enumeration method, are shown in Figure 1. 
The number of the Pareto-optimal solutions is 32.  
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Figure 1. Pareto-optimal solutions for problem 1 of 

size )2020( × given by Taillard (1993). 

 
Figure 1 also shows the result of Varadharajan et al. 

(2005). They show that the net set of non-dominated solu-
tions from various multi-objective flowshop-scheduling 
algorithms included their proposed algorithm (MOSA); 
however, only 9 of the 14 solutions in the net set are the 
Pareto-optimal solutions. 

5.  EFFECT OF THE NEIGHBOURHOOD 
STRUCTURES 

The search efficiency of the neighbourhood struc-
tures in the SA method is analysed with problem 1 of 

size (20×20) given by Taillard (1993). 

5.1 Combined Shift Operations 

As the result of the experiments, the shift operation 
was the most effective in the permutation-flowshop sched-
uling problems. In this paper, we propose two combined 
shift operations, mixed shift and best shift, which combine 
the right and left shifts as follows: 

 
(1) Mixed-shift operation: For two positions i and j 

selected in the shift operation, if i < j, left shift is 
taken; otherwise, right shift is taken. 

(2) Best-shift operation: Right-shift and left- shift op-
erations are performed, two generated sequences 
are evaluated and the best one is selected. 

5.2 Numerical Experiments 

Numerical experiments are performed for different 
temperatures and several iterations. The results of repli-
cations with different random seeds are shown in Figure. 

In the experiments, we used the following parame-
ter specifications, and the influence of these parameters 
is shown later. 

 
Initial sequence:  Job number 
Weight:  w = 0.5 
Replication:  R = 100 
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Figure 2. Pareto-optimal solutions for problem 1 of size 

(20×20) given by Taillard (1993) using the 
neighbourhood structure of the inversion op-
eration. 

 
Figure 2 shows the effect of the number of itera-

tions N as an obtained Pareto-optimal frontier. A nu-
merical experiment is performed at c = 0.0012 and the 
neighbourhood structure of the inversion operation. Us-
ing the neighbourhood structure of the inversion opera-
tion, only one Pareto-optimal solution is found at N = 
100,000, but 16 Pareto-optimal solutions are found at N 
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= 1,000,000. 
The effect of the neighbourhood structures are sum-

marized in Figures 3 and 4.  
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Figure 3. Number of obtained Pareto-optimal solutions and 
number of iterations (c = 0.0012). 
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Figure 4. Number of obtained Pareto-optimal solutions and 

temperature (N = 100,000). 

 

Figure 3 shows the relationship between the number 
of the obtained Pareto-optimal solutions and the number of 
iterations N for each neighbourhood structure: exchange, 
inversion, right shift, left shift, mixed shift and best shift. 
Figure 4 shows the relationship between the number of the 
obtained Pareto-optimal solutions and the temperature c for 
each neighbourhood structure.  

Figures 3 and 4 show that the mixed-shift and best-shift 
operations outperformed the other neighbourhood struc-
tures. 

6.  EFFECT OF THE INITIAL SEQUENCE 
AND WEIGHT SETTING 

In the MOSA, Varadharajan et al. (2005) use two ini-
tial sequences, with one being generated with the objective 
of minimizing the makespan and the other with the objec-
tive of minimizing the total flowtime of jobs, which are 
obtained using the existing heuristics. The MOSA uses a 
probability function to select probabilistically either the 
objective of minimizing the make-span or the objective of 
minimizing the total flowtime of jobs. 

6.1 Setting the Initial Sequence 

To analyse the effect of the initial sequences, the fol-
lowing two settings were used: 

 
(a) The sequence of job number.  
(b) Pareto-optimal sequence x0 with f1(x0) = 2297, 

f2(x0) = 35831 for problem 1 of size )2020( × mini-
mizing f1(x). 

6.2 Setting the Weight in the SA Search 

As seen in Figures 3 and 4, for the fixed weight w = 
0.5 and replication R = 100, almost all Pareto-optimal 
solutions are found. We employ a similar procedure with 
phase 2 of the MOSA. After carrying out the SA search 
for the pre-determined number of iterations, we repeat the 
SA search process with a different w setting. If the num-
ber of replications is R, we set w = (r − 0.5)/R for the rth 
SA search. 

6.3 Numerical Experiments 

Anumerical experiment is performed at c = 0.0012 
and the neighborhood structure of the mixed-shift opera-
tion. Figure 5 and 6 show the rate of finding the Pareto-
optimal solutions for each of the w setting. Figure 5(a) 
and 5(b) show the effect of two types of the initial se-
quences used in the SA algorithm. Figure 5 show that 
the sequence of job number taken as the initial solution 
in the SA search gives a performance better than the 
sequence nearer to the Pareto-optimal solutions. And 
Figure 5 and 6 show that the weight setting is changed 
after carrying out the SA search gives a performance 
better than the fixed weight. The weight setting is 
changed after carrying out the SA search in such a way 
that the weight covers the entire objective-function 
space uniformly during the replications. 

The proposed SA search method is summarized as 
follows; 

 
1) Neighbourhood structure: mixed-shift operation 
2) Initial solution: job number 
3) w = (r − 0.5)/R, c = 0.0012 
4) N = 100,000, R = 100 
The proposed SA search method could find all 32 

Pareto-optimal solutions of problem 1 of size )2020( × . 
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Figure 6(a). Contour line of the number of obtained Pareto 
solutions for the number of iterations and the 
number of replications (c = 0.0012, w = (r −
0.5)/R). 
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Figure 6(b). Contour line of the number of obtained 
Pareto solutions for the number of itera-
tions and the number of replications (c = 
0.0012, w = (r − 0.5)/R). 
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Figure 5(a). Contour line of the number of obtained Pareto
solutions for the number of iterations and the
number of replications (c = 0.0012, w = 0.5). 
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7.  PERFORMANCE OF THE PROPOSED 
SA SEAECH METHOD 

In the MOSA, Varadharajan et al. (2005) use 10 
problems of size(20×20). A numerical experiment is 
performed at the above conditions and using 10 prob-
lems. Table 1 shows the rate of finding the Pareto-
optimal solutions for 10 problems of size(20×20). Ta-
ble 1 shows that the proposed SA search method is good 
performance in all instances.  

 
Table 1. Rate of finding the Pareto-optimal solutions. 

Hirakawa and Ishigaki Taillard 
(20×20) 
Problens 

Varad- 
Harajan 
(2005) W = 0.5 W = ( r-0.5)/R 

1 0.28 0.97 1.00 
2 0.03 0.59 1.00 
3 0.20 0.64 0.93 
4 0.47 0.89 1.00 
5 0.03 0.39 0.97 
6 0.14 0.67 0.95 
7 0.22 0.61 1.00 
8 0.02 0.54 0.94 
9 0.21 0.33 0.97 
10 0.21 0.75 0.96 

8.  CONCLUSION 

We have considered the problem of permutation-
flowshop scheduling with minimizing the makespan and 
the total flowtime of jobs, and proposed an effective 
heuristics based on SA in which the weighted sum of the 
makespan and the total flowtime of jobs is used. The 
essences of the heuristics are in the selection of the ini-
tial sequence, weight setting and neighbourhood struc-
ture to generate a solution in the search process.  

 

The initial sequence of job number is better than 
the sequence near the Pareto-optimal solutions. The 
weight setting is changed after carrying out the SA 
search in such a way that the weight covers the entire 
objective-function space uniformly during the replica-
tions. The mixed-shift and best-shift operations outper-
form other neighbourhood structures. 

It is necessary to investigate the performance of the 
proposed method for solving various problems; however, 
these results will support the fact that the SA search al-
gorithm with the proposed settings is efficient. 
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