• Title/Summary/Keyword: Paraventricular nucleus

Search Result 75, Processing Time 0.029 seconds

Expression of neurotransmitter(CRF, CRF-R and CRF-BP) related to stress in stomach and zusanli in rats (백서의 위와 족삼리에서 스트레스 관련(CRF, CRF-R, CRF-BP) 신경전달물질의 발현에 대한 연구)

  • Lee, Chang-hyun;Kim, Yung-ho;Song, Beom-yong;Yook, Tae-han
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.89-102
    • /
    • 2003
  • Objective: The expression of CRF(corticotropin releasing factor), CRF-R(receptor) and CRF-BP(binding protein) in CNS neurons projecting to the stomach and ST36 using the pseudorabies virus in the rat was investigated. Methods: After survival times of 5 days following injection of PRV-Ba-Gal, The thirty rats were perfused, and their brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV-Ba-Gal histochemical staining method and(or) CRF, CRF-R and CRF-BP immunohistochemical method. The common expressed areas of the brain projecting to the stomach and zusanli(ST36) following injection of PRV-Ba-Gal were observed with light microscope. Results: 1) The dense accumulation of CRF-immunoreactive terminals is seen in the area postrema, n. tractus solitarius, external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. 2) Aggregates of CRF-R immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular n., gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence, preoptic n., arcuate n. and hind limb area of cerebral cortex. 3) Aggregates of CRF-BP immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular nucleus, gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence and arcuate n.. Conclusions : These results suggest that PRV-Ba-Gal labeled areas projecting to stomach and ST36 may be related to the central autonomic pathways. A part of CNS neurons projecting to the stomach and ST36 were related to expression of CRF, CRF-R and CRF-BP related to the stress in central autonomic center.

  • PDF

Stress and Immune Function (스트레스와 면역기능)

  • Koh, Kyung-Bong
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.4 no.1
    • /
    • pp.146-154
    • /
    • 1996
  • The impact of stress on immune function is known to be associated with the interactions among the central nervous system(CNS), neuroendocrine system, and immune system. The main pathways between stress and immune system are wiring of lymphoid organs and neuroendocrine system. Immune system also produces neuropeptides, which modulate immune system. Mediators of psychosocial influences on immune function are found to be peptides released by the pituitry, hormones, md autonomic nervous system. Hypothalamus integrates endocrine, neural and immune systems. Particularly, paraventricular nucleus appears to play a central role in this integration. On the other hand, endocrine system receives feedback from the immune system. The major regulatory pathways which pituitary modulates include the hypothalamic-pituitary-adrenal-thymic(HPAT) axis, hypothalamic-pituitary-gonadal-thymic(HPGT) axis, pineal-hypothalamic-pituitary(PHP) axis. Bidirectional pathways such as feedforward and feedback pathways are suggested in the interaction between stress and immune system. It suggests that psychosocial inputs affect immune function, but also that immunological inputs affect psychosocial function. Thus, prospective studies for elucidating the relationship between stress and immune function should incorporate measures of immune function as well as measures of endocrine, autonomic, and brain activities at the same time.

  • PDF

Effect of adrenalectomy on gene expression of adrenoceptor subtypes in the hypothalamic paraventricular nucleus

  • Kam, Kyung-Yoon;Shin, Seung Yub;Han, Seong Kyu;Li, Long Hua;Chong, Wonee;Baek, Dae Hyun;Lee, So Yeong;Ryu, Pan Dong
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.207-215
    • /
    • 2004
  • It is well known that the hypothalamic-pituitary-adrenocortical (HPA) axis is under the negative feedback control of adrenal corticosteroids. Previous studies have suggested that glucocorticoids can regulate neuroendocrine cells in the paraventricular nucleus (PVN) by modulating catecholaminergic transmission, a major excitatory modulator of the HPA axis at the hypothalamic level. But, the effects of corticosteroids on the expression of adrenoceptor subtypes are not fully understood. In this work, we examined mRNA levels of six adrenoceptor subtypes (${\alpha}_{1A}$, ${\alpha}_{1B}$, ${\alpha}_{2A}$, ${\alpha}_{2B}$, ${\beta}_1$ and ${\beta}_2$) in the PVN of normal and adrenalectomized (ADX) rats. Total RNA ($2.5{\mu}g$) was extracted from PVN micropunches of brain slices ($500{\mu}m$) and analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The levels of corticotropin-releasing hormone (CRH) mRNA were increased in the ADX rats relative to normal rats, indicating that the PVN had been liberated from the negative feedback of corticosteroids. Among the six adrenoceptor subtypes examined, mRNA levels for ${\alpha}_{1B}$- and ${\beta}_1$-adrenoceptors were increased, but the level for ${\beta}_2$-adrenoceptors was decreased in the ADX rats. The mRNA levels for the other three subtypes and for the general and neuronal specific housekeeping genes, glyceroaldehyde-3-phosphate dehydrogenase (GAPDH) and N-enolase, respectively, were not changed in the ADX rats. In conclusion, the results indicate that adrenal steroids selectively regulate the gene expression of adrenoceptor subtypes in the PVN.

Effects of Herbal Bath on Acetic Acid-induced Somato-visceral Pain in Mice (현호색, 창출, 천수근 약욕이 체성내장통에 미치는 영향)

  • Kim, Ick-Hwan;Lee, Taeck-Hyun;Kim, Chang-Ju;Lee, Choong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.642-650
    • /
    • 2006
  • As an effective non-pharmacological method of pain relief, hydrotherapy was widely used. And bath additive has been used for enhancing the efficacy of hydrotherapy, In the present study, as a bath additive, the analgesic activity of HAC, which composed of Corydalis turtschaninovii, Atractylodes japonica, and Harpagophytum procumbens(HAC), was investigated in the ventrolateral periaqueductal gray (VIPAG), lateral PAG (IPAG), central nuclei of amygdala (CeA), and the paraventricular nucleus of the hypothalamus (PVN) in mice, using writhing test and immunohistochemistry for c-Fos. Male C57BU6 mice weighing $25{\;}{\pm}{\;}2g$ (8 weeks of age) were used for this experiment. The animals were divided into five groups: the control group, the acetic acid treatment group, the acetic acid treatment and 0.01 g/L HAC-immersed group, the acetic acid treatment and 0.1 g/L HAC-immersed group, and the acetic acid treatment and 1.0 g/L HAC-immersed group. To induce somato-visceral pain in the experimental animals, a single intraperitoneal (i.p.) injection of acetic acid was administrated to each animal, and the animals of the control group received injections of equivalent doses of normal saline. The animals of the HAC-immersed groups were immersed the water with HAC powder at the respective doses deep enough to cover the mice body, and those of the control group and the acetic acid treatment group immersed the water without HAC powder at 10 min immediately after the acetic acid injection. Our present study has shown that the HAC reduced the acetic acid-induced abdominal constrictions and the acetic acid-Induced increase of numbers of c-Fos-positive cells in the VIPAG, IPAG, PVN, and CeA. The most potent analgesic effect appeared with the treatment of 1.0 g/L KB-immersed group. Based on our present results, it is very possible that HAC can be a potent therapeutic bath additive for alleviating pain without the fear of addiction to the drugs and side-effects associated with the prescription of multiple analgesic drugs.

Neurotropism and Invasiveness of $\alpha-Herpes$ Virus in the Rodent (설치류에서 알파 Herpes 바이러스의 신경친화성과 침습)

  • KIM Jin-Sang;Yi Seong-Joon;Card J. Patrick
    • The Journal of Korean Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.59-70
    • /
    • 1997
  • The ability of neurotropic alpha herpesviruses to replicate within synaptically linked neurons has made these pathogens valuable tools for transneuronal analysis. Recent studies suggest that unique gene products expressed by genetically engineered strains of virus may permit the use of multiple strains in complex tracing paradigms. In the present study we have examined the invasiveness of two genetically engineered strains of the swine pathogen known as pseudorabies virus(PRV). The two strains were isogenic with the attenuated Bartha strain of PRV; in one strain a lacZ reporter gene was inserted into the gC locus (PRV-BaBlu; $4.75\times10^8pfu/ml$) contrained a PRV envelope glycoprotein gene that was absent in PRV-BaBlu. Simultaneous or temporally separated sequential injection of $4\mu\ell$ of each strain into the ventral wall of the stomach produced a predictale course of retrograde synaptic infection. The results were as follows: 1. PRV-BaBlu and PRV-D infected the dorsal motor nucleus of vagus nerve(DMV) and paraventricular nucleus(PVN). 2. Invasion and replication of PRV-D occured at a faster rate than the parental strain or PRV-BaBlu. 3. PRV-D was much more virulent than PRV-BaBlu or the parental strain. 4. Co-injection of PRV-D and PRV-BaBlu produced an infection that was more virulent than that produced by the parental strain (PRV-Bartha), 5. Neurons in DMV were permissive to co-infection with PRV-D and PRV-BaBlu when they were injected simultaneously into the same site. 6. Replication of PRV-BaBlu was compromised by prior infection of the same circuit with PRV-D. 7. Prior infection of neurons with PRV-D maked them resistant to infection with PRV-BaBlu.

  • PDF

The study on the TH(tyrosine hydroxylase) immunoreactive cells in forebrain of developing mongolian gerbil (발달중인 Mongolian gerbil의 전뇌에서 TH 면역반응세포의 분포에 관한 연구)

  • Lee, Kyoung-youl;park, Il-kwon;Kwon, Hyo-jung;Park, Mi-sun;Song, Chi-won;Kim, Moo-kang;Chang, Kyu-tae;Lee, Kang-iee;Kim, Won-sik;Park, Won-hark
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.147-155
    • /
    • 2001
  • The immunocytochemical localization of tyrosine hydroxylase(TH) is examined in the developmental forebrain of mongolian gerbil in order to determine changes in the distribution and cytology of neurons. At each of the different developmental stage, including prenatal(E)14, E16, E18, E20, postnatal(P)0, P2, P4 days, mongolian gerbils were sacrificed. In E14, TH-IR cells were predominantly round or oval in shape and their processes were very short. In olfactory blub, TH-IR cells were begun to appear from E20. In the striatum, we observed only fibers of TH-IR at all ages. From E16, TH-IR perikarya and fiber were present in periventricular nucleus and paraventricular nucleus of hypothalamus. The changes from the early to the late prenatal stages of development appear to be the result of an increase in number of TH-IR perikarya and processes. These results were shown slight differences to other rodents.

  • PDF

Experession of Vasoactive Intestinal Peptide in the Hypothalamus of Fasting and Anorexia Mutant Mice (anx/anx) (절식시킨 생쥐와 식욕부진 돌연변이 생쥐의 시상하부에서 Vasoactive Intestinal Peptide의 발현)

  • 김미자;김영옥;김혜경;정주호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.937-942
    • /
    • 2001
  • The present study was conducted to identify the mechanism about the regulation of appetite by examining the expression patterns of vasoactive intestinal peptide in the hypothalamus of either fasted for 24 hours or anorexia mutant mouse. In order to investigate expression pattern of the vasoactive intestinal peptide, immunohisto-chemistry was employed along with reverse transcription polymerase chain reaction (RT-PCR) and dot blotting. Immunohistochemistry has shown that level of expression of vasoactive intestinal peptide and appetite-suppessing neuropeptide, was lower in the suprachiasmatic nucleus (SCN) and higher in the paraventricular nucleus (PVN) of the anorexia mutant group than in the comparable regions in the control group. This pattern was repeated in the fasting group, which also showed lower and higher levels of vasoactive intestinal peptide expression in the SCN and PVN respectively, In contrast, the vasoactive intestinal peptide mRNA level in the entire hypothalamus via RT-PCR and dot blotting was similar in the fasting and control groups, while it was significantly increased in the anorexia mutant group.

  • PDF

Stomach clusterin as a gut-derived feeding regulator

  • Cherl NamKoong;Bohye Kim;Ji Hee Yu;Byung Soo Youn;Hanbin Kim;Evonne Kim;So Young Gil;Gil Myoung Kang;Chan Hee Lee;Young-Bum Kim;Kyeong-Han Park;Min-Seon Kim;Obin Kwon
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.149-154
    • /
    • 2024
  • The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis.

Relationships of Cocaine and Amphetamine Regulated Transcript with Serotonin in the Brain

  • Park, S. H.;B. S. Kwon;J. R. Chun;J. W. Jahng;Lee, H. T.;K. S. Chung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.51-51
    • /
    • 2001
  • Cocaine and amphetamine-regulated transcript (CART) is a satiety factor that is regulated by leptin. It was reported that the mice intracerebroventricularly injected with CART showed behavioral changes resembled with the typical behavioral alterations found in the mice carrying disorders in the brain serotonergic (5-HT) system. Hence, this study was conducted to find out the relationships between CART and 5-HT. We first examined the mRNA levels of CART after the injections of para-chlorophenylalanine (pCPA, 300 mg/kg i.p., single injection or daily for three consecutive days) in the rat brains by in situ hybridization using the mouse CART cDNA probe cloned in our laboratory. Systemic administrations of pCPA, a potent inhibitor of tryptophan hydroxylase, the rate limiting enzyme of 5-HT biosynthesis, acutely depletes the brain 5-HT transporter (5-HTT) in the dorsal raphe nucleus (DRN), which reuptakes terminal 5-HT. Results indicated that the mRNA level of CART significantly decreased in the arcuate nucleus, paraventricular nucleus, and lateral hypothalamic nucleus by three days of daily injection with pCPA with no noticeable change detected 24 hrs after the single injection. The message levels of 5-HTT in DRN decreased in both single and three days of injections. Secondly, to investigate whether CART affect to 5-HT, mouse genomic CART gene, which is consist of 3 exons and 2 introns and mouse neurofilament light (NF-L) chain promoter were cloned. Then, we constructed neuron specific expression vector, which was transfected into HeLa cell using lipid-mediated transfection system. Expression of GFP and CART linked to NF-L-chain promoter in the transfected HeLa cell were detected by using fluorescent microscope and RT-PCR. These results confirmed normal expression of DNA constructs in vitro. Then, to increase brain specific expression of CART in vivo transgenic mice carrying CART gene controlled the deleted NF-L-chain promoter were generated by the DNA microinjection into pronuclei of fertilized embryos. Transgenic mice were detected by Southern blot. Further study is necessary to examine CART expression and 5-HTT in these transgenic mice. Therefore, these results suggest that there maybe a positive molecular correlation between CART and 5-HT in responding to the stimuli.

  • PDF

INTRACEREBROVENTRICULARLY ADMINISTERED PHENYLALANINE AND TYROSINE: EFFECTS ON FEEDING BEHAVIOUR AND NOREPINEPHRINE CONCENTRATIONS OF SPECIFIC BRAIN SITES IN THE CHICKEN

  • Choi, Y.-H.;Furuse, M.;Okumura, J.;Shimoyama, Y.;Sugahara, K.;Denbow, D.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.3
    • /
    • pp.255-259
    • /
    • 1996
  • A study was carried out to investigate the action of central L-pheylalanine (Phe) and L-tyrosine (Tyr) on food intake of the chicken. In the first trial, Phe ($200{\mu}g/10{\mu}l$) or saline was acutely administered into the right lateral ventricle (i.c.v.) of chickens (5 birds per each group). Birds (4 birds per each group) were administered with the i.c.v. Tyr ($200{\mu}g/10{\mu}l$) or saline in the second trial. The brains of the birds were removed for catecholamine assy 30 min postadministration. Catecholamine concentrations were measured at specific sites of the brain (LH: lateral hypothalamus, PVN: paraventricular nucleus, and VMH: ventromedial hypothalamus). No significant effect of amino acids on the concentration of norepinephrine of brain sites investigated was detected. Food intake and rectal body temperature were also monitored for 6 h after central administrations of Phe, Tyr or saline (5 birds per each group). Both Phe and Tyr, up to $1mg/10{\mu}l$, failed to modulate food intake or rectal body temperature.