Effects of Herbal Bath on Acetic Acid-induced Somato-visceral Pain in Mice

현호색, 창출, 천수근 약욕이 체성내장통에 미치는 영향

  • Kim, Ick-Hwan (Department of Physiology, College of Oriental Medicine, Kyungwon University) ;
  • Lee, Taeck-Hyun (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Kim, Chang-Ju (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Lee, Choong-Yeol (Department of Physiology, College of Oriental Medicine, Kyungwon University)
  • 김익환 (경원대학교 한의과대학 생리학교실) ;
  • 이택현 (경희대학교 의과대학 생리학교실) ;
  • 김창주 (경희대학교 의과대학 생리학교실) ;
  • 이충열 (경원대학교 한의과대학 생리학교실)
  • Published : 2006.06.25

Abstract

As an effective non-pharmacological method of pain relief, hydrotherapy was widely used. And bath additive has been used for enhancing the efficacy of hydrotherapy, In the present study, as a bath additive, the analgesic activity of HAC, which composed of Corydalis turtschaninovii, Atractylodes japonica, and Harpagophytum procumbens(HAC), was investigated in the ventrolateral periaqueductal gray (VIPAG), lateral PAG (IPAG), central nuclei of amygdala (CeA), and the paraventricular nucleus of the hypothalamus (PVN) in mice, using writhing test and immunohistochemistry for c-Fos. Male C57BU6 mice weighing $25{\;}{\pm}{\;}2g$ (8 weeks of age) were used for this experiment. The animals were divided into five groups: the control group, the acetic acid treatment group, the acetic acid treatment and 0.01 g/L HAC-immersed group, the acetic acid treatment and 0.1 g/L HAC-immersed group, and the acetic acid treatment and 1.0 g/L HAC-immersed group. To induce somato-visceral pain in the experimental animals, a single intraperitoneal (i.p.) injection of acetic acid was administrated to each animal, and the animals of the control group received injections of equivalent doses of normal saline. The animals of the HAC-immersed groups were immersed the water with HAC powder at the respective doses deep enough to cover the mice body, and those of the control group and the acetic acid treatment group immersed the water without HAC powder at 10 min immediately after the acetic acid injection. Our present study has shown that the HAC reduced the acetic acid-induced abdominal constrictions and the acetic acid-Induced increase of numbers of c-Fos-positive cells in the VIPAG, IPAG, PVN, and CeA. The most potent analgesic effect appeared with the treatment of 1.0 g/L KB-immersed group. Based on our present results, it is very possible that HAC can be a potent therapeutic bath additive for alleviating pain without the fear of addiction to the drugs and side-effects associated with the prescription of multiple analgesic drugs.

Keywords

References

  1. Ito, S., Okuda-Ashitaka, E., Minami, T. Central and peripheral roles of prostaglandins in pain and their interactions with novel neuropeptides nociceptin and nocistatin: Neurosci Res. 41(4):299-332, 2001 https://doi.org/10.1016/S0168-0102(01)00289-9
  2. Novy, C.M., Jagmin, M.G. Pain management in the elderly orthopaedic patient: Orthop Nurs. 16(1):51-57, 1997
  3. J Am Geriatr Soc, American Geriatrics Society. The management of chronic pain in older persons: AGS Panel on Chronic Pain in Older Persons. American Geriatrics Society. 46(5):635-651, 1998 https://doi.org/10.1111/j.1532-5415.1998.tb01084.x
  4. Sandkuhler, J. The organization and function of endogenous antinociceptive systems. Prog Neurobiol. 50(1):49-81, 1996 https://doi.org/10.1016/0301-0082(96)00031-7
  5. Clement, C.I., Keay, K.A., Podzebenko, K., Gordon, B.D., Bandler, R. Spinal sources of noxious visceral and noxious deep somatic afferent drive onto the ventrolateral periaqueductal gray of the rat. J Comp Neurol. 425(3):323-344, 2000 https://doi.org/10.1002/1096-9861(20000925)425:3<323::AID-CNE1>3.0.CO;2-Z
  6. Rodella, L., Rezzani, R., Gioia, M., Tredici, G., Bianchi, R. Expression of Fos immunoreactivity in the rat supraspinal regions following noxious visceral stimulation. Brain Res Bull. 47(4):357-366, 1998 https://doi.org/10.1016/S0361-9230(98)00123-3
  7. Gallagher, M., Chiba, A.A. The amygdala and emotion. Curr Opin Neurobiol. 6(2):221-227, 1996 https://doi.org/10.1016/S0959-4388(96)80076-6
  8. Tanimoto, S., Nakagawa, T., Yamauchi, Y., Minami, M., atoh, M. Differential contributions of the basolateral and central nuclei of the amygdala in the negative affective component of chemical somatic and visceral pains in rats. Eur J Neurosci. 18(8):2343-2350, 2003 https://doi.org/10.1046/j.1460-9568.2003.02952.x
  9. Peana, A.T., D'Aquila, P.S., Chessa, M.L., Moretti, M.D., Serra, G., Pippia, P. (-)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol. 460(1):37-41, 2003 https://doi.org/10.1016/S0014-2999(02)02856-X
  10. Giamberardino, M.A., Valente, R., de Bigontina, P., Vecchiet, L. Artificial ureteral calculosis in rats: behavioural characterization of visceral pain episodes and their relationship with referred lumbar muscle hyperalgesia. Pain. 61(3):459-469, 1995 https://doi.org/10.1016/0304-3959(94)00208-V
  11. Lee, T.H., Jang, M.H., Shin, M.C., Lim, B.V., Kim, Y.P., Kim, H., Choi, H.H., Lee, K.S., Kim, E.H., Kim, C.J. Dependence of rat hippocampal c-Fos expression on intensity and duration of exercise. Life Sci. 72(12):1421-1436, 2003 https://doi.org/10.1016/S0024-3205(02)02406-2
  12. Yilmaz, B., Goktepe, A.S., Alaca, R., Mohur, H., Kayar, A.H. Comparison of a generic and a disease specific quality of life scale to assess a comprehensive spa therapy program for knee osteoarthritis. Joint Bone Spine. 71(6):563-566, 2004 https://doi.org/10.1016/j.jbspin.2003.09.008
  13. Bender, T., Karagulle, Z., Balint, G.P., Gutenbrunner, C., Balint, P.V., Sukenik, S. Hydrotherapy, balneotherapy, and spa treatment in pain management. Rheumatol Int. 25(3):220-224, 2005 https://doi.org/10.1007/s00296-004-0487-4
  14. Jakobsson, U., Rahm Hallberg I., Westergren, A. Pain management in elderly persons who require assistance with activities of daily living: a comparison of those living at home with those in special accommodations. Eur J Pain. 8(4):335-344, 2004 https://doi.org/10.1016/j.ejpain.2003.10.007
  15. Odent, M. Birth under water. Lancet. 2(8365-66):1476-1477, 1983
  16. Simkin, P., Bolding, A. Update on nonpharmacologic approaches to relieve labor pain and prevent suffering. J Midwifery Womens Health. 49(6):489-504, 2004 https://doi.org/10.1016/j.jmwh.2004.07.007
  17. 박환서. 건강목욕법. 서울, 도서출판 빛샘. p 157, 1994
  18. Dale, A., Cornwell, S. The role of lavender oil in relieving perineal discomfort following childbirth: a blind randomized clinical trial. J Adv Nurs. 19(1):89-96, 1994 https://doi.org/10.1111/j.1365-2648.1994.tb01056.x
  19. Almeida, R.N., Navarro, D.S., Barbosa-Filho, J.M. Plants with central analgesic activity. Phytomedicine. 8(4):310-322, 2001 https://doi.org/10.1078/0944-7113-00050
  20. Asongalem, E.A., Foyet, H.S., Ngogang, J., Folefoc, G.N., Dimo, T., Kamtchouing, P. Analgesic and antiinflammatory activities of Erigeron floribundus. J Ethnopharmacol. 91(2-3):301-308, 2004 https://doi.org/10.1016/j.jep.2004.01.010
  21. 김성원 외 2인. 현호색의 이온 삼투용법 활용에 관한 연구. 동국한의학연구소논문집. 18(2):69-81, 2000
  22. 중약대사전. 서울, 정담출판사. p 2972, 4063, 1999
  23. 李時珍. 本草綱目. 북경, 인민위생출판사. p 803, 1982
  24. 黃宮. 本草求眞. 서울, 일중사. p 119, 1991
  25. Wang, D.J., Mao, H.Y., Lei, M. Rotundium in the treatment of atrial fibrillation. Zhongguo Zhong Xi Yi Jie He Za Zhi. 13(8), 455-457, 1993
  26. Kubo, M., Matsuda, H., Tokuoka, K., Ma, S., Shiomoto, H. Anti-inflammatory activities of methanolic extract and alkaloidal components from Corydalis tuber. Biol Pharm Bull. 17(2):262-265, 1994 https://doi.org/10.1248/bpb.17.262
  27. Matsuda, H., Tokuoka, K., Wu, J., Tanaka, T., Kubo, M. Inhibitory effects of methanolic extract from corydalis tuber against types I-IV allergic models. Biol Pharm Bull. 18(7):963-967, 1995 https://doi.org/10.1248/bpb.18.963
  28. Saito, S.Y., Tanaka, M., Matsunaga, K., Li, Y., Ohizumi, Y. The combination of rat mast cell and rabbit aortic smooth muscle is the simple bioassay for the screening of anti-allergic ingredient from methanolic extract of Corydalis tuber. Biol Pharm Bull. 27(8):1270-1274, 2004 https://doi.org/10.1248/bpb.27.1270
  29. Sagare, A.P., Lee, Y.L., Lin, T.C., Chen, C.C., Tsay, H.S. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae) - a medicinal plant. Plant Sci. 160(1):139-147, 2000 https://doi.org/10.1016/S0168-9452(00)00377-0
  30. Lin, M.T., Wang, J.J., Young, M.S. The protective effect of dl-tetrahydropalmatine against the development of amygdala kindling seizures in rats. Neurosci Lett. 320(3):113-116, 2002 https://doi.org/10.1016/S0304-3940(01)02508-3
  31. Yuan, C.S., Mehendale, S.R., Wang, C.Z., Aung, H.H., Jiang, T., Guan, X., Shoyama, Y. Effects of Corydalis yanhusuo and Angelicae dahuricae on cold pressor-induced pain in humans: a controlled trial. J Clin Pharmacol. 44(11):1323-1327, 2004 https://doi.org/10.1177/0091270004267809
  32. Cheong, B.S., Choi, D.Y., Cho, N.H., Lee, J.D., Chang, H.K., Shin, M.C., Shin, M.S., Kim, C.J. Modulation of Corydalis tuber on glycine-induced ion current in acutely dissociated rat periaqueductal gray neurons. Biol Pharm Bull. 27(8):1207-1211, 2004 https://doi.org/10.1248/bpb.27.1207
  33. 唐宗海. 本草問答. 서울, 대성출판사. p 42, 1994
  34. 鄒澍, 임진석 옮김, 本經疏證. 서울, 아티전. p 55, 1998
  35. Satoh, K., Nagai, F., Ushiyama, K., Kano, I. Specific inhibition of Na+,K(+)-ATPase activity by atractylon, a major component of byaku-jutsu, by interaction with enzyme in the E2 state. Biochem Pharmacol. 51(3):339-343, 1996 https://doi.org/10.1016/0006-2952(95)02188-4
  36. Kitajima, J., Kamoshita, A., Ishikawa, T., Takano, A., Fukuda, T., Isoda, S., Ida, Y. Glycosides of Atractylodes japonica. Chem Pharm Bull (Tokyo). 51(2):152-157, 2003 https://doi.org/10.1248/cpb.51.152
  37. Resch, M., Heilmann, J., Steigel, A., Bauer, R. Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity. Planta Med. 67(5):437-442, 2001 https://doi.org/10.1055/s-2001-15817
  38. Baghdikian, B., Lanhers, M.C., Fleurentin, J., Ollivier, E., Maillard, C., Balansard, G., Mortier, F. An analytical study, anti-inflammatory and analgesic effects of Harpagophytum procumbens and Harpagophytum zeyheri. Planta Med. 63(2):171-176, 1997 https://doi.org/10.1055/s-2006-957638
  39. Czygan, F., Krueger, A., Achier, W., Volk, O. Pharmaceutical-biological studies of the genus Harpagophytum procumbens (Bruch.) DC ex Meisson. Part I. Phytochemical standardization of tubera Harpagophyti/ Dtsch. Apoth.-Ztg. 117, 1431-1144, 1977
  40. Kikuchi, T., Matsuda, S., Kubo, Y., Namba, T. New iridoid glucosides from Harpagophytum procumbens DC. Chem. Pharm. Bull. 31, 2296-2301, 1983 https://doi.org/10.1248/cpb.31.2296
  41. Fontaine, J., Elchami, A.A., Vanhaelen, M., Vanhaelen-Fastre, R. Biological analysis of Harpagophytum procumbens D.C. II. Pharmacological analysis of the effects of harpagoside, harpagide and harpagogenine on the isolated guinea-pig ileum. J Pharm Belg. 36(5):321-324, 1981
  42. Wegener, T. Therapy of degenerative diseases of the musculoskeletal system with South African devil's claw (Harpagophytum procumbens DC). Wien Med Wochenschr. 149(8-10):254-257, 1999
  43. Burger, J., Brandt, E., Ferreira, D. Iridoid and phenolic glycosides from Harpagophytum procumbens. Phytochemistry. 26, 1453-1457, 1987 https://doi.org/10.1016/S0031-9422(00)81833-6
  44. Mahomed, I.M., Ojewole, J.A. Analgesic, antiinflammatory and antidiabetic properties of Harpagophytum procumbens DC (Pedaliaceae) secondary root aqueous extract. Phytother Res. 18(12):982-989, 2004 https://doi.org/10.1002/ptr.1593
  45. Kovelowski, C.J., Raffa, R.B., Porreca, F. Tramadol and its enantiomers differentially suppress c-fos-like immunoreactivity in rat brain and spinal cord following acute noxious stimulus. Eur J Pain. 2(3):211-219, 1998 https://doi.org/10.1016/S1090-3801(98)90017-9
  46. Ballou, L.R., Botting, R.M., Goorha, S., Zhang, J., Vane, J.R. Nociception in cyclooxygenase isozyme-deficient mice. Proc Natl Acad Sci U S A. 97(18):10272-10276, 2000
  47. Ochi, T., Motoyama, Y., Goto, T. The analgesic effect profile of FR122047, a selective cyclooxygenase-1 inhibitor, in chemical nociceptive models. Eur J Pharmacol. 391(1-2):49-54, 2000 https://doi.org/10.1016/S0014-2999(00)00051-0
  48. Hernandez-Perez, M., Sanchez-Mateo, C.C., Montalbetti-Moreno, Y., Rabanal, R.M. Studies on the analgesic and anti-inflammatory effects of Sideritis candicans Ait. var. eriocephala Webb aerial part. J Ethnopharmacol. 93(2-3):279-284, 2004 https://doi.org/10.1016/j.jep.2004.03.044
  49. Kusuhara, H., Fukunari, A., Matsuyuki, H., Okumoto, T. Principal involvement of cyclooxygenase-1-derived prostaglandins in the c-fos expression of the rat hind brain following visceral stimulation with acetic acid. Brain Res Mol Brain Res. 52(1):151-156, 1997 https://doi.org/10.1016/S0169-328X(97)00263-5
  50. Takeshige, C., Sato, T., Mera, T., Hisamitsu, T., Fang, J. Descending pain inhibitory system involved in acupuncture analgesia. Brain Res Bull. 29(5):617-634, 1992 https://doi.org/10.1016/0361-9230(92)90131-G
  51. Clement, C.I., Keay, K.A., Owler, B.K., Bandler, R. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat. J Comp Neurol. 366(3):495-515, 1996 https://doi.org/10.1002/(SICI)1096-9861(19960311)366:3<495::AID-CNE9>3.0.CO;2-#
  52. Pertovaara, A., Bravo, R., Herdegen, T. Induction and suppression of immediate-early genes in the rat brain by a selective alpha-2-adrenoceptor agonist and antagonist following noxious peripheral stimulation. Neuroscience. 54(1):117-126, 1993 https://doi.org/10.1016/0306-4522(93)90387-U
  53. Neugebauer, V., Li, W. Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol. 87(1):103-112, 2002 https://doi.org/10.1152/jn.00264.2001
  54. Goldstein, L.E., Rasmusson, A.M., Bunney, B.S., Roth, R.H. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 16(15):4787-4798, 1996 https://doi.org/10.1523/JNEUROSCI.16-15-04787.1996
  55. Crown, E.D., King, T.E., Meagher, M.W., Grau, J.W. Shock-induced hyperalgesia: III. Role of the bed nucleus of the stria terminalis and amygdaloid nuclei. Behav Neurosci. 114(3):561-573, 2000 https://doi.org/10.1037/0735-7044.114.3.561
  56. Bornhovd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C., Büchel, C. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain. 125(6):1326-1336, 2002 https://doi.org/10.1093/brain/awf137
  57. Nakagawa, T., Katsuya, A., Tanimoto, S., Yamamoto, J., Yamauchi, Y., Minami, M., Satoh, M. Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett. 344(3):197-200, 2003 https://doi.org/10.1016/S0304-3940(03)00465-8
  58. Frenois, F., Cador, M., Caille. S., Stinus, L., Le Moine, C. Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur J Neurosci. 16(7):1377-1389, 2002 https://doi.org/10.1046/j.1460-9568.2002.02187.x
  59. Pitkanen, A., Savander, V., LeDoux, J.E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20(11):517-523, 1997 https://doi.org/10.1016/S0166-2236(97)01125-9