• Title/Summary/Keyword: Parametric methods

Search Result 891, Processing Time 0.022 seconds

Intensive comparison of semi-parametric and non-parametric dimension reduction methods in forward regression

  • Shin, Minju;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.615-627
    • /
    • 2022
  • Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.

Spectral analysis of random process

  • Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.13-20
    • /
    • 1994
  • The spectrum estimation methods of random processes are expressed in this paper. Beginning with the basic theory, non-parametric and parametric methods are overviewed. As to non-parametric method, numerical calculation method is also discussed. As to parametric method, AR model is a very famous and effective model representing random process. Estimation methods of AR parameters which have been proposed are mentioned here. Wavelet analysis is a recently interested technique in signal processing. An application of wavelet analysis is also shown.

  • PDF

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.

Practical statistics in pain research

  • Kim, Tae Kyun
    • The Korean Journal of Pain
    • /
    • v.30 no.4
    • /
    • pp.243-249
    • /
    • 2017
  • Pain is subjective, while statistics related to pain research are objective. This review was written to help researchers involved in pain research make statistical decisions. The main issues are related with the level of scales that are often used in pain research, the choice of statistical methods between parametric or nonparametric statistics, and problems which arise from repeated measurements. In the field of pain research, parametric statistics used to be applied in an erroneous way. This is closely related with the scales of data and repeated measurements. The level of scales includes nominal, ordinal, interval, and ratio scales. The level of scales affects the choice of statistics between parametric or non-parametric methods. In the field of pain research, the most frequently used pain assessment scale is the ordinal scale, which would include the visual analogue scale (VAS). There used to be another view, however, which considered the VAS to be an interval or ratio scale, so that the usage of parametric statistics would be accepted practically in some cases. Repeated measurements of the same subjects always complicates statistics. It means that measurements inevitably have correlations between each other, and would preclude the application of one-way ANOVA in which independence between the measurements is necessary. Repeated measures of ANOVA (RMANOVA), however, would permit the comparison between the correlated measurements as long as the condition of sphericity assumption is satisfied. Conclusively, parametric statistical methods should be used only when the assumptions of parametric statistics, such as normality and sphericity, are established.

Nonparametric Inference for Accelerated Life Testing (가속화 수명 실험에서의 비모수적 추론)

  • Kim Tai Kyoo
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.242-251
    • /
    • 2004
  • Several statistical methods are introduced 1=o analyze the accelerated failure time data. Most frequently used method is the log-linear approach with parametric assumption. Since the accelerated failure time experiments are exposed to many environmental restrictions, parametric log-linear relationship might not be working properly to analyze the resulting data. The models proposed by Buckley and James(1979) and Stute(1993) could be useful in the situation where parametric log-linear method could not be applicable. Those methods are introduced in accelerated experimental situation under the thermal acceleration and discussed through an illustrated example.

Note on response dimension reduction for multivariate regression

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.519-526
    • /
    • 2019
  • Response dimension reduction in a sufficient dimension reduction (SDR) context has been widely ignored until Yoo and Cook (Computational Statistics and Data Analysis, 53, 334-343, 2008) founded theories for it and developed an estimation approach. Recent research in SDR shows that a semi-parametric approach can outperform conventional non-parametric SDR methods. Yoo (Statistics: A Journal of Theoretical and Applied Statistics, 52, 409-425, 2018) developed a semi-parametric approach for response reduction in Yoo and Cook (2008) context, and Yoo (Journal of the Korean Statistical Society, 2019) completes the semi-parametric approach by proposing an unstructured method. This paper theoretically discusses and provides insightful remarks on three versions of semi-parametric approaches that can be useful for statistical practitioners. It is also possible to avoid numerical instability by presenting the results for an orthogonal transformation of the response variables.

A Review of Statistical Analysis Methods Applied on Traditional Korean Medicine Research (한의학 연구에 활용된 통계분석 방법에 대한 고찰)

  • Jang, Seon-Il;Yun, Young-Gab;Choi, Kyoung-Ho
    • Herbal Formula Science
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 2009
  • Objective : The purpose of this study is to indicate of problems in statistical analysis method of "The Korean Journal of oriental Medical Prescription" and we will be proposed the useful application of the statistical analysis method. Methods : In this paper, we were analysed statistical analysis methodology from published journal articles "The Korean Journal of Oriental Medical Prescription" December, year 2000 to December, year 2008. We were investigated of problems in application of structured analysis methods those journal articles that including statistical analysis techniques and analysis methods. Results : 1. A random allocation of the experimental group and control groups are important factors in the planning process of statistical analysis. However, there are less explanation those journal articles. 2. There are no consideration in specimen size that there will be considerate by the level of significance and statistical test. 3. Many article authors were confused between parametric methods and non-parametric methods that they were applied parametric statistical analysis methods although inapplicable sample size. 4. There were applied the parametric methods consists of t-test instead non-parametric methods in the comparison of average intergroup relations. 5. There were less understanding posterior analysis and were confused with t-test. Conclusion : Our goal was to outline the key methods with a brief discussion of problems(statistical analysis methods), avenues for solutions. we recommend authors to use an appropriate statistical analysis methods for obtaining a more cautions results.

  • PDF

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

Parametric and Non Parametric Measures for Text Similarity (텍스트 유사성을 위한 파라미터 및 비 파라미터 측정)

  • Mlyahilu, John;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.193-198
    • /
    • 2019
  • The wide spread of genuine and fake information on internet has lead to various studies on text analysis. Copying and pasting others' work without acknowledgement, research results manipulation without proof has been trending for a while in the era of data science. Various tools have been developed to reduce, combat and possibly eradicate plagiarism in various research fields. Text similarity measurements can be manually done by using both parametric and non parametric methods of which this study implements cosine similarity and Pearson correlation as parametric while Spearman correlation as non parametric. Cosine similarity and Pearson correlation metrics have achieved highest coefficients of similarity while Spearman shown low similarity coefficients. We recommend the use of non parametric methods in measuring text similarity due to their non normality assumption as opposed to the parametric methods which relies on normality assumptions and biasness.