• Title/Summary/Keyword: Parametric error

Search Result 270, Processing Time 0.03 seconds

Inverse Offset Method for Adaptive Cutter Path Generation from Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • The inverse offset method (IOM) is widely used for generating cutter paths from the point-based surface where the surface is characterised by a set of surface points rather than parametric polynomial surface equations. In the IOM, cutter path planning is carried out by specifying the grid sizes, called the step-forward and step-interval distances respectively in the forward and transverse cutting directions. The step-forward distance causes the chordal deviation and the step-forward distance produces the cusp. The chordal deviation and cusp are also functions of local surface slopes and curvatures. As the slopes and curvatures vary over the surface, different step-forward and step-interval distances are appropriate in different areas for obtaining the machined surface accurately and efficiently. In this paper, the chordal deviation and cusp height are calculated in consideration with the surface slopes and curvatures, and their combined effect is used to estimate the machined surface error. An adaptive grid generation algorithm is proposed, which enables the IOM to generate cutter paths adaptively using different step-forward and step-interval distances in different regions rather than constant step-forward and step-interval distances for entire surface.

Design of Suboptimal Robust Kalman Filter via Linear Matrix Inequality (선형 행렬 부등식을 이용한 준최적 강인 칼만 필터의 설계)

  • Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.560-570
    • /
    • 1999
  • This paper formulates the suboptimal robust Kalman filtering problem into two coupled Linear Matrix Inequality (LMI) problems by applying Lyapunov theory to the augmented system which is composed of the state equation in the uncertain linear system and the estimation error dynamics. This formulations not only provide the sufficient conditions for the existence of the desired filter, but also construct the suboptimal robust Kalman filter. The proposed filter can guarantee the optimized upper bound of the estimation error variance for uncertain systems with parametric uncertainties in both the state and measurement matrices. In addition, this paper shows how the problem of finding the minimizing solution subject to Quadratic Matrix Inequality (QMI), which cannot be easily transformed into LMI using the usual Schur complement formula, can be successfully modified into a generic LMI problem.

  • PDF

Wavelet Estimation of Regression Functions with Errors in Variables

  • Kim, Woo-Chul;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.849-860
    • /
    • 1999
  • This paper addresses the issue of estimating regression function with errors in variables using wavelets. We adopt a nonparametric approach in assuming that the regression function has no specific parametric form, To account for errors in covariates deconvolution is involved in the construction of a new class of linear wavelet estimators. using the wavelet characterization of Besov spaces the question of regression estimation with Besov constraint can be reduced to a problem in a space of sequences. Rates of convergence are studied over Besov function classes $B_{spq}$ using $L_2$ error measure. It is shown that the rates of convergence depend on the smoothness s of the regression function and the decay rate of characteristic function of the contaminating error.

  • PDF

An Alternative Parametric Estimation of Sample Selection Model: An Application to Car Ownership and Car Expense (비정규분포를 이용한 표본선택 모형 추정: 자동차 보유와 유지비용에 관한 실증분석)

  • Choi, Phil-Sun;Min, In-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.345-358
    • /
    • 2012
  • In a parametric sample selection model, the distribution assumption is critical to obtain consistent estimates. Conventionally, the normality assumption has been adopted for both error terms in selection and main equations of the model. The normality assumption, however, may excessively restrict the true underlying distribution of the model. This study introduces the $S_U$-normal distribution into the error distribution of a sample selection model. The $S_U$-normal distribution can accommodate a wide range of skewness and kurtosis compared to the normal distribution. It also includes the normal distribution as a limiting distribution. Moreover, the $S_U$-normal distribution can be easily extended to multivariate dimensions. We provide the log-likelihood function and expected value formula based on a bivariate $S_U$-normal distribution in a sample selection model. The results of simulations indicate the $S_U$-normal model outperforms the normal model for the consistency of estimators. As an empirical application, we provide the sample selection model for car ownership and a car expense relationship.

Combining multi-task autoencoder with Wasserstein generative adversarial networks for improving speech recognition performance (음성인식 성능 개선을 위한 다중작업 오토인코더와 와설스타인식 생성적 적대 신경망의 결합)

  • Kao, Chao Yuan;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.670-677
    • /
    • 2019
  • As the presence of background noise in acoustic signal degrades the performance of speech or acoustic event recognition, it is still challenging to extract noise-robust acoustic features from noisy signal. In this paper, we propose a combined structure of Wasserstein Generative Adversarial Network (WGAN) and MultiTask AutoEncoder (MTAE) as deep learning architecture that integrates the strength of MTAE and WGAN respectively such that it estimates not only noise but also speech features from noisy acoustic source. The proposed MTAE-WGAN structure is used to estimate speech signal and the residual noise by employing a gradient penalty and a weight initialization method for Leaky Rectified Linear Unit (LReLU) and Parametric ReLU (PReLU). The proposed MTAE-WGAN structure with the adopted gradient penalty loss function enhances the speech features and subsequently achieve substantial Phoneme Error Rate (PER) improvements over the stand-alone Deep Denoising Autoencoder (DDAE), MTAE, Redundant Convolutional Encoder-Decoder (R-CED) and Recurrent MTAE (RMTAE) models for robust speech recognition.

An Overview of Bootstrapping Method Applicable to Survey Researches in Rehabilitation Science

  • Choi, Bong-sam
    • Physical Therapy Korea
    • /
    • v.23 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Parametric statistical procedures are typically conducted under the condition in which a sample distribution is statistically identical with its population. In reality, investigators use inferential statistics to estimate parameters based on the sample drawn because population distributions are unknown. The uncertainty of limited data from the sample such as lack of sample size may be a challenge in most rehabilitation studies. Objects: The purpose of this study is to review the bootstrapping method to overcome shortcomings of limited sample size in rehabilitation studies. Methods: Articles were reviewed. Results: Bootstrapping method is a statistical procedure that permits the iterative re-sampling with replacement from a sample when the population distribution is unknown. This statistical procedure is to enhance the representativeness of the population being studied and to determine estimates of the parameters when sample size are too limited to generalize the study outcome to target population. The bootstrapping method would overcome limitations such as type II error resulting from small sample sizes. An application on a typical data of a study represented how to deal with challenges of estimating a parameter from small sample size and enhance the uncertainty with optimal confidence intervals and levels. Conclusion: Bootstrapping method may be an effective statistical procedure reducing the standard error of population parameters under the condition requiring both acceptable confidence intervals and confidence level (i.e., p=.05).

Creep-Life Prediction and Standard Error Analysis of Type 316LN Stainless Steel (Type 316LN 스테인리스 강의 크리프 수명 예측과 표준오차 분석)

  • Yun S.N.;Kim W.G.;Liu W.S.;Yi W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1406-1411
    • /
    • 2005
  • The creep rupture data for type 316LN stainless steels were collected through literature survey or experimental data produced in KAERI. Using these data, polynomial equations for predicting creep life were obtained by Larson-Miller (L-M), Orr-Sherby-Dorn (O-S-D) and Manson-Haferd (M-H) etc. time-temperature parametric (TTP) methods. Standard error of estimate (SEE) values for the each parameter was obtained with different temperatures through the statistical process of the creep data. The results of L-M, O-S-D and M-H methods showed good creep-life prediction, but M-H method showed better agreement than L-M and O-S-D methods. Especially, it was found that SEE values of M-H method at $700^{\circ}C$ were lower than that of L-M and O-S-D methods.

  • PDF

An Assessment of Statistical Validity of Articles Published in the Journal of Korean Acupuncture & Moxibusition Society - from 1984 to 2002 - (대한침구학회지 논문의 통계적 오류에 관한 연구)

  • Lee, Seung-deok
    • Journal of Acupuncture Research
    • /
    • v.21 no.1
    • /
    • pp.176-188
    • /
    • 2004
  • This study was carried out to investigate statistical validity of medical articles that used various statistical techniques such as t-test, analysis of variance, correlation analysis, regression analysis and chi-square test. For study 429 original articles using those statistical methods were selected from Journal of Korean Acupuncture & Moxibusition Society published from 1984 to 2002. 429 original articles were reviewed to analyzed the statistical procedures. Results are summarized as follows : 1. In this study 93 articles(21.68%) of 429 ones didn't report statement of statistical method in detail. 2. 53 articles(12.53%) didn't report p-value in correctly, and 245 articles(57.11 %) used mean${\pm}$standard error (Mean${\pm}$SEM.) and 109 articles used mean${\pm}$standard deviation(Mean${\pm}$SD.). All of 23 articles using nonparametric statistical techniques made an error to central tendency or dispersion. 3. 175 articles(59.93%) and 14 articles(4.79%) of 292 ones made an error to description of equal variances and normal distribution. 4. 99 articles(50%) of 185 ones misused t-test and 4 articles of 5 ones misused chi-square test. 5. 28 articles(73.68%) of 38 ones using discrete variable misused parametric technique such as t-test or ANOVA. 2 articles and 1 article of 125 ones choosing paired samples misused independent t-test and Mann-Whitney U test. 6. 20 articles using analysis of variance didn't use multiple comparison.

  • PDF

A comparison study on regression with stationary nonparametric autoregressive errors (정상 비모수 자기상관 오차항을 갖는 회귀분석에 대한 비교 연구)

  • Yu, Kyusang
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.157-169
    • /
    • 2016
  • We compare four methods to estimate a regression coefficient under linear regression models with serially correlated errors. We assume that regression errors are generated with nonlinear autoregressive models. The four methods are: ordinary least square estimator, general least square estimator, parametric regression error correction method, and nonparametric regression error correction method. We also discuss some properties of nonlinear autoregressive models by presenting numerical studies with typical examples. Our numerical study suggests that no method dominates; however, the nonparametric regression error correction method works quite well.

Hydrologic Response Estimation Using Mallows' $C_L$ Statistics (Mallows의 $C_L$ 통계량을 이용한 수문응답 추정)

  • Seong, Gi-Won;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • The present paper describes the problem of hydrologic response estimation using non-parametric ridge regression method. The method adapted in this work is based on the minimization of the $C_L$ statistics, which is an estimate of the mean square prediction error. For this method, effects of using both the identity matrix and the Laplacian matrix were considered. In addition, we evaluated methods for estimating the error variance of the impulse response. As a result of analyzing synthetic and real data, a good estimation was made when the Laplacian matrix for the weighting matrix and the bias corrected estimate for the error variance were used. The method and procedure presented in present paper will play a robust and effective role on separating hydrologic response.

  • PDF