• Title/Summary/Keyword: Parametric Density Estimation

Search Result 50, Processing Time 0.025 seconds

Application of Fuzzy Information Representation Using Frequency Ratio and Non-parametric Density Estimation to Multi-source Spatial Data Fusion for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.114-128
    • /
    • 2005
  • Fuzzy information representation of multi-source spatial data is applied to landslide hazard mapping. Information representation based on frequency ratio and non-parametric density estimation is used to construct fuzzy membership functions. Of particular interest is the representation of continuous data for preventing loss of information. The non-parametric density estimation method applied here is a Parzen window estimation that can directly use continuous data without any categorization procedure. The effect of the new continuous data representation method on the final integrated result is evaluated by a validation procedure. To illustrate the proposed scheme, a case study from Jangheung, Korea for landslide hazard mapping is presented. Analysis of the results indicates that the proposed methodology considerably improves prediction capabilities, as compared with the case in traditional continuous data representation.

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

On Simulation for Normalization of Game Satisfaction Density Function (게임만족도 분포의 정규화에 관한 시뮬레이션)

  • Ham, Hyung-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1185-1196
    • /
    • 2007
  • To enhance competitiveness of game industry and added value, it needs scientific research and bases that suggest satisfaction standard which quantitatively evaluates satisfaction to develop games which have high satisfaction for demanders. Specially, scoring of satisfaction factors and estimation of population distribution are important task. This allows which a game have high or low satisfaction compared to other games. Also we predict improvable factors and technical aspects to promote satisfaction. For it, in this paper we discuss ways to normalization of score distribution for satisfaction factors and estimate its density function using parametric density estimation by simulation.

  • PDF

Automatic Selection of the Turning Parametter in the Minimum Density Power Divergence Estimation

  • Changkon Hong;Kim, Youngseok
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.453-465
    • /
    • 2001
  • It is often the case that one wants to estimate parameters of the distribution which follows certain parametric model, while the dta are contaminated. it is well known that the maximum likelihood estimators are not robust to contamination. Basuet al.(1998) proposed a robust method called the minimum density power divergence estimation. In this paper, we investigate data-driven selection of the tuning parameter $\alpha$ in the minimum density power divergence estimation. A criterion is proposed and its performance is studied through the simulation. The simulation includes three cases of estimation problem.

  • PDF

On Practical Efficiency of Locally Parametric Nonparametric Density Estimation Based on Local Likelihood Function

  • Kang, Kee-Hoon;Han, Jung-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.607-617
    • /
    • 2003
  • This paper offers a practical comparison of efficiency between local likelihood approach and conventional kernel approach in density estimation. The local likelihood estimation procedure maximizes a kernel smoothed log-likelihood function with respect to a polynomial approximation of the log likelihood function. We use two types of data driven bandwidths for each method and compare the mean integrated squares for several densities. Numerical results reveal that local log-linear approach with simple plug-in bandwidth shows better performance comparing to the standard kernel approach in heavy tailed distribution. For normal mixture density cases, standard kernel estimator with the bandwidth in Sheather and Jones(1991) dominates the others in moderately large sample size.

On the Estimation of Satisfaction Distribution for Game Factors (게임요소의 만족도분포 추정에 관한 연구)

  • Yum, Joon-Keun;Ham, Hyung-Bum
    • Journal of Korea Game Society
    • /
    • v.8 no.3
    • /
    • pp.23-30
    • /
    • 2008
  • To strengthen the competitiveness of the game industry, one needs to develope a tool for evaluation of the satisfaction level of the game users, which leads to the improvement of the quality of games and increment of the amount of game trade. In this study, we developed factors to measure the satisfaction level and estimate their distributional properties. For the purpose, using a survey data for RPG games, we discussed several aspects for normalization of score distribution for satisfaction factors and estimated their density function by use of parametric density estimation of SAS/INSIGHT. We believe that the proposed results help us to predict or estimate the satisfaction level of newly developed games as well as the current popular games.

  • PDF

Comparison of Parametric and Bootstrap Method in Bioequivalence Test

  • Ahn, Byung-Jin;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.367-371
    • /
    • 2009
  • The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled data sets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

Parametric nonparametric methods for estimating extreme value distribution (극단값 분포 추정을 위한 모수적 비모수적 방법)

  • Woo, Seunghyun;Kang, Kee-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.531-536
    • /
    • 2022
  • This paper compared the performance of the parametric method and the nonparametric method when estimating the distribution for the tail of the distribution with heavy tails. For the parametric method, the generalized extreme value distribution and the generalized Pareto distribution were used, and for the nonparametric method, the kernel density estimation method was applied. For comparison of the two approaches, the results of function estimation by applying the block maximum value model and the threshold excess model using daily fine dust public data for each observatory in Seoul from 2014 to 2018 are shown together. In addition, the area where high concentrations of fine dust will occur was predicted through the return level.

A Study on Goodness-of-fit Test for Density with Unknown Parameters

  • Hang, Changkon;Lee, Minyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.483-497
    • /
    • 2001
  • When one fits a parametric density function to a data set, it is usually advisable to test the goodness of the postulated model. In this paper we study the nonparametric tests for testing the null hypothesis against general alternatives, when the null hypothesis specifies the density function up to unknown parameters. We modify the test statistic which was proposed by the first author and his colleagues. Asymptotic distribution of the modified statistic is derived and its performance is compared with some other tests through simulation.

  • PDF

An algorithm for real time blood flow estimation of LDF (LDF의 실시간 혈류추정을 위한 알고리즘)

  • Kim, Jong-Weon;Ko, Han-Woo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.78-79
    • /
    • 1998
  • This paper describes a real time algorithm for blood flow estimation of LDF(laser Doppler flowmeter). Many algorithms for blood flow estimation are using power spectral density of Doppler signal by blood flow. In these research, the fast Fourier transformation is used to estimate power spectral density. This is a block processing procedure rather than real time processing. The algorithm in this paper used parametric spectral estimation. This has real time capability by estimation of AR(autoregressive) parameters sample by sample, and has smoothing power spectrum. Also, the frequency resolution is not limited by number of samples used to estimate AR parameter. Another advantage of this algorithm is that AR model enhance SNR.

  • PDF