• Title/Summary/Keyword: Parameterized LMI

Search Result 13, Processing Time 0.026 seconds

(Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems) (파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계)

  • Jo, Sang-Hyeon;Kim, Gi-Tae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile H$\infty$ state feedback controllers for linear varying systems with affine parameter uncertainties, and static state feedback controller with structured uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ static state feedback controller, and the set of controllers which satisfies non-fragility are presented. The obtained condition can be rewritten as parameterized Linear Matrix Inequalities(PLMls), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMIs, PLMIs feasibility problems involve infinitely many LMIs hence are inherently difficult to solve numerically. Therefore PLMls are transformed into standard LMI problems using relaxation techniques relying on separated convexity concepts. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a degree.

Receding horizon controller deign for fuzzy systems with input constraints

  • Jeong, Seung-Cheol;Choi, Doo-Jin;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.83.4-83
    • /
    • 2002
  • $\bullet$ We present a state-feedback RHC for discrete-time TS fuzzy systems with input constriants. $\bullet$ The controller employ the current and one-step past information on the fuzzy weighting functions. $\bullet$ It is obtained from the finite horizon optimization problem with the invariant ellipsoid constraint $\bullet$ Under parameterized LMI conditions on the terminal weighting matrix $\bullet$ The closed-loop system stability is guaranteed. $\bullet$ The parameterized linear matrix inequalities are relaxed to a finite number of solvable LMIs.

  • PDF

LMI-based Design of PI-type H∞ Controller for Poly topic Models (폴리토픽 모델을 위한 PI 형 H∞ 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.255-257
    • /
    • 2009
  • The robust stabilization problem of a multivariable uncertain system with a polytopic model is considered. A PI-type $H_{\infty}$ controller with a low pass filter is used for robust stabilization and noise rejection. The problem is reduced to an LMI optimization problem. A sufficient condition for the existence of the PI controller is derived in terms of LMIs. The PI gain matrices are parameterized by using the solution matrices to the existence conditions. Finally, a numerical design example is given.

Robust and Non-fragile $H^{\infty}$ Controller Design for Tracking Servo of Blu-ray disc Drive System (Blu-ray 디스크 드라이브 시스템 트래킹 서보시스템에 대한 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계)

  • Lee, Hyung-Ho;Kim, Joon-Ki;Kim, Woon-Ki;Jo, Sang-Woo;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.32-41
    • /
    • 2008
  • In this paper, we describe the synthesis of robust and non-fragile $H^{\infty}$ state feedback controllers for linear systems with affine parameter uncertain tracking servo system of blu-ray disc drive, as well as static state feedback controller with polytopic uncertainty Similarity any other control system, the objective of the track-following system design for optical disc drives is to construct the system with better performance and robustness against modeling uncertainties and various disturbances. Also, the obtained condition can be rewritten as parameterized linear matrix inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a resulted polytopic region.

Design of Robust and Non-fragile $H_{\infty}$ Kalman-type Filter for System with Parameter Uncertainties: PLMI Approach (변수 불확실성을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계: PLMI 접근법)

  • Kim, Joon Ki;Yang, Seung Hyeop;Bang, Kyung Ho;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.181-186
    • /
    • 2012
  • In this paper, we describe the synthesis of robust and non-fragile Kalman filter design for a class of uncertain linear system with polytopic uncertainties and filter gain variations. The sufficient condition of filter existence, the design method of robust non-fragile filter, and the measure of non-fragility in filter are presented via LMIs(Linear Matrix Inequality) technique. And the obtained sufficient condition can be represented as PLMIs(parameterized linear matrix inequalities) that is, coefficients of LMIs are functions of a parameter confined to a compact set. Since PLMIs generate infinite LMIs, we use relaxation technique, find the finite solution for robust non-fragile filter, and show that the resulting filter guarantees the asymptotic stability with parameter uncertainties and filter fragility. Finally, a numerical example will be shown.

Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems (섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계)

  • Park, Ju-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

NON-FRAGILE GUARANTEED COST CONTROL OF UNCERTAIN LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAYS

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.61-76
    • /
    • 2002
  • The robust non-fragile guaranteed cost control problem is studied in this paper for class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-hounded arid time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound far all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost contrellers is 7iven in terms of the feasible solution to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.

Stability Condition of Robust and Non-fragile $H^{\infty}$ Hovering Control with Real-time Tuning Available Fuzzy Compensator

  • Kim, Joon-Ki;Lim, Do-Hyung;Kim, Won-Ki;Kang, Soon-Ju;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.364-371
    • /
    • 2007
  • In this paper, we describe the synthesis of robust and non-fragile $H^{\infty}$ state feedback controllers for linear systems with affine parameter uncertainties, as well as a static state feedback controller with poly topic uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{\infty}$ static state feedback controller with fuzzy compensator, and the region of controllers that satisfies non-fragility are presented. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a resulted polytopic region.

Descriptor and Non-Descriptor Controllers in Mixed $H_2/H_{\infty}$ Control of Descriptor Systems

  • Choe, Yeon-Wook;Ahn, Young-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.892-897
    • /
    • 2003
  • This paper considers the design of mixed $H_2/\;H_{\infty}$ controllers for linear time-invariant descriptor systems. Firstly, an $H_{\infty}$ and $H_2$ synthesis problem for a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, the existence of a mixed $H_2/\;H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_{\infty}$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables. In addition, we show the procedure by which a obtained descriptor controller can be transformed to a non-descriptor one.

  • PDF

Receding Horizon $H_{\infty}$ Predictive Control for Linear State-delay Systems

  • Lee, Young-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2081-2086
    • /
    • 2005
  • This paper proposes the receding horizon $H_{\infty}$ predictive control (RHHPC) for systems with a state-delay. We first proposes a new cost function for a finite horizon dynamic game problem. The proposed cost function includes two terminal weighting terns, each of which is parameterized by a positive definite matrix, called a terminal weighting matrix. Secondly, we derive the RHHPC from the solution to the finite dynamic game problem. Thirdly, we propose an LMI condition under which the saddle point value satisfies the well-known nonincreasing monotonicity. Finally, we shows the asymptotic stability and $H_{\infty}$-norm boundedness of the closed-loop system controlled by the proposed RHHPC. Through a numerical example, we show that the proposed RHHC is stabilizing and satisfies the infinite horizon $H_{\infty}$-norm bound.

  • PDF