• 제목/요약/키워드: Parameter Optimization

검색결과 1,538건 처리시간 0.03초

BJT의 DC 해석 용 SPICE 모델 파라미터 추출 방법에 관한 연구 (A Study on the SPICE Model Parameter Extraction Method for the BJT DC Model)

  • 이은구
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1769-1774
    • /
    • 2009
  • An algorithm for extracting the BJT DC model parameter values for SPICE model is proposed. The nonlinear optimization method for analyzing the device I-V data using the Levenberg-Marquardt algorithm is proposed and the method for calculating initial conditions of model parameters to improve the convergence characteristics is proposed. The base current and collector current obtained from the proposed method shows the root mean square error of 6.04% compared with the measured data of the PNP BJT named 2SA1980.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법 (A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods)

  • ;신상문
    • 품질경영학회지
    • /
    • 제46권1호
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.

Large-scaled truss topology optimization with filter and iterative parameter control algorithm of Tikhonov regularization

  • Nguyen, Vi T.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.511-528
    • /
    • 2021
  • There are recently some advances in solving numerically topology optimization problems for large-scaled trusses based on ground structure approach. A disadvantage of this approach is that the final design usually includes many bars, which is difficult to be produced in practice. One of efficient tools is a so-called filter scheme for the ground structure to reduce this difficulty and determine several distinct bars. In detail, this technique is valuable for practical uses because unnecessary bars are filtered out from the ground structure to obtain a well-defined structure during the topology optimization process, while it still guarantees the global equilibrium condition. This process, however, leads to a singular system of equilibrium equations. In this case, the minimization of least squares with Tikhonov regularization is adopted. In this paper, a proposed algorithm in controlling optimal Tikhonov parameter is considered in combination with the filter scheme due to its crucial role in obtaining solution to remove numerical singularity and saving computational time by using sparse matrix, which means that the discrete optimal topology solutions depend on choosing the Tikhonov parameter efficiently. Several numerical examples are investigated to demonstrate the efficiency of the filter parameter control algorithm in terms of the large-scaled optimal topology designs.

요청한 작업 경로에 따른 매니퓰레이터의 기구학적 변수 선정을 위한 군집 지능 기반 최적 설계 (Swarm Intelligence-based Optimal Design for Selecting the Kinematic Parameters of a Manipulator According to the Desired Task Space Trajectory)

  • 이준우
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.504-510
    • /
    • 2016
  • Robots are widely utilized in many fields, and various demands need customized robots. This study proposes an optimal design method based on swarm intelligence for selecting the kinematic parameter of a manipulator according to the task space trajectory desired by the user. The optimal design method is dealt with herein as an optimization problem. This study is based on swarm intelligence-based optimization algorithms (i.e., ant colony optimization (ACO) and particle swarm optimization algorithms) to determine the optimal kinematic parameters of the manipulator. The former is used to select the optimal kinematic parameter values, whereas the latter is utilized to solve the inverse kinematic problem when the ACO determines the parameter values. This study solves a design problem with the PUMA 560 when the desired task space trajectory is given and discusses its results in the simulation part to verify the performance of the proposed design.

비트코인 가격 예측을 위한 LSTM 모델의 Hyper-parameter 최적화 연구 (A Study on the Hyper-parameter Optimization of Bitcoin Price Prediction LSTM Model)

  • 김준호;성한울
    • 한국융합학회논문지
    • /
    • 제13권4호
    • /
    • pp.17-24
    • /
    • 2022
  • 비트코인은 정부나 금융기관에 의존되어 있지 않은 전자 거래를 지향하며 만들어진 peer-to-peer 방식의 암호화폐이다. 비트코인은 최초 발행 이후 거대한 블록체인 금융 시장을 생성했고, 이에 따라 기계 학습을 이용한 비트코인 가격 데이터를 예측하는 연구들이 활발해졌다. 그러나 기계 학습 연구의 비효율적인 Hyper-parameter 최적화 과정이 연구 진행에 있어 비용적인 측면을 악화시키고 있다. 본 논문은 LSTM(Long Short-Term Memory) 층을 사용하는 비트코인 가격 예측 모델에서 가장 대표적인 Hyper-parameter 중 Timesteps, LSTM 유닛의 수, 그리고 Dropout 비율의 전체 조합을 구성하고 각각의 조합에 대한 예측 성능을 측정하는 실험을 통해 정확한 비트코인 가격 예측을 위한 Hyper-parameter 최적화의 방향성을 분석하고 제시한다.

레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발 (Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function)

  • 박영환
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Parameter optimization for SVM using dynamic encoding algorithm

  • Park, Young-Su;Lee, Young-Kow;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2542-2547
    • /
    • 2005
  • In this paper, we propose a support vector machine (SVM) hyper and kernel parameter optimization method which is based on minimizing radius/margin bound which is a kind of estimation of leave-one-error. This method uses dynamic encoding algorithm for search (DEAS) and gradient information for better optimization performance. DEAS is a recently proposed optimization algorithm which is based on variable length binary encoding method. This method has less computation time than genetic algorithm (GA) based and grid search based methods and better performance on finding global optimal value than gradient based methods. It is very efficient in practical applications. Hand-written letter data of MNI steel are used to evaluate the performance.

  • PDF

유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구 (A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance)

  • 강병관;이세민;박정욱
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

동적 스펙트럼 접근을 위한 유전자 알고리즘 기반 전송 매개변수 최적화 기법 (A Transmission Parameter Optimization Scheme Based on Genetic Algorithm for Dynamic Spectrum Access)

  • 채근홍;윤석호
    • 한국통신학회논문지
    • /
    • 제38A권11호
    • /
    • pp.938-943
    • /
    • 2013
  • 본 논문에서는 동적 스펙트럼 접근을 위한 유전자 알고리즘 기반 전송 매개변수 최적화 기법을 제안한다. 구체적으로는 전송 매개변수 최적화를 위해 다목적 적합도 함수를 단일 목적 적합도 함수들의 가중합으로 표현하고, 유전자 알고리즘을 이용하여 주어진 전송 시나리오에 최적화된 전송 매개변수 값을 얻는다. 모의실험을 통하여 제안한 다목적 적합도 함수를 이용하여 주어진 시나리오에 따라 전송 매개변수를 최적화한 결과를 보인다.