• 제목/요약/키워드: Parameter Model Updating

검색결과 90건 처리시간 0.025초

환경피로균열 열화특성 예측을 위한 확률론적 접근 (Probabilistic Approach for Predicting Degradation Characteristics of Corrosion Fatigue Crack)

  • 이태현;윤재영;류경하;박종원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.271-279
    • /
    • 2018
  • Purpose: Probabilistic safety analysis was performed to enhance the safety and reliability of nuclear power plants because traditional deterministic approach has limitations in predicting the risk of failure by crack growth. The study introduces a probabilistic approach to establish a basis for probabilistic safety assessment of passive components. Methods: For probabilistic modeling of fatigue crack growth rate (FCGR), various FCGR tests were performed either under constant load amplitude or constant ${\Delta}K$ conditions by using heat treated X-750 at low temperature with adequate cathodic polarization. Bayesian inference was employed to update uncertainties of the FCGR model using additional information obtained from constant ${\Delta}K$ tests. Results: Four steps of Bayesian parameter updating were performed using constant ${\Delta}K$ test results. The standard deviation of the final posterior distribution was decreased by a factor of 10 comparing with that of the prior distribution. Conclusion: The method for developing a probabilistic crack growth model has been designed and demonstrated, in the paper. Alloy X-750 has been used for corrosion fatigue crack growth experiments and modeling. The uncertainties of parameters in the FCGR model were successfully reduced using the Bayesian inference whenever the updating was performed.

모델보정을 위한 구조물 매개변수 규명시 가진점 .측정점의 선정 (Excitation and Measurement Points Selection to Identify Structural Parameters for Model Tuning)

  • 박남규;박윤식
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1271-1280
    • /
    • 2000
  • A sensor placement technique to identify structural parameter was developed. Experimental results must be acquired to identify unknown dynamic characteristics of a targeting structure for the comparison between analytical model and real structure. If the experimental environment was not equipped itself properly, it can be happened that some valuable information are distorted or ill-condition can be occurred. In this work the index to determine exciting points was derived from the criterion of maximizing parameter sensitivity matrix and that to choose measurement points was from that of preserving the invariant of sensitivity matrix. This idea was applied to a compressor hull structure to verify its performance. The result shows that the selection of measurement and excitation points using suggested criteria improve the ill-conditioning problem of inverse type problems such , as model updating.

Parameter Identification for the Tractor Dynamic Model by use of a Forced Vibration Experiment

  • R.Noguchi;O.Kinoshita;E.Inoue;Na, K.kano
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1117-1126
    • /
    • 1993
  • Physical parameters in the forward direction of the tractor , which mainly affects the vibration characteristics of the tractor dynamic model, were able to be identified in a short time by using the Gauss-Newton method with extremum searching based on the data obtained from a forced vibration experiment. It was clarified that a period for the updating of the parameter estimates method has effects on the convergence accuracy of identification for the spring constant in the forward direction of the tractor.

  • PDF

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Structural damage detection based on changes of wavelet transform coefficients of correlation functions

  • Sadeghian, Mohsen;Esfandiari, Akbar;Fadavie Manochehr
    • Structural Monitoring and Maintenance
    • /
    • 제9권2호
    • /
    • pp.157-177
    • /
    • 2022
  • In this paper, an innovative finite element updating method is presented based on the variation wavelet transform coefficients of Auto/cross-correlations function (WTCF). The Quasi-linear sensitivity of the wavelet coefficients of the WTCF concerning the structural parameters is evaluated based on incomplete measured structural responses. The proposed algorithm is used to estimate the structural parameters of truss and plate models. By the solution of the sensitivity equation through the least-squares method, the finite element model of the structure is updated for estimation of the location and severity of structural damages simultaneously. Several damage scenarios have been considered for the studied structure. The parameter estimation results prove the high accuracy of the method considering measurement and mass modeling errors.

블럭펄스 함수를 이용한 기준 모델 적응 제어기 설계 (The Design of Model Reference Adaptive Controller via Block Pulse Functions)

  • 김진태;김태훈;이명규;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권1호
    • /
    • pp.1-7
    • /
    • 2002
  • This paper proposes a algebraic parameter determination of MRA(Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily inn a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

Adaptive Parameter Estimator Design for Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.40.5-40
    • /
    • 2001
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-S) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control.

  • PDF

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

실무적 적용 관점에서 신뢰성 분포의 유형화 모형의 고찰 (Review of Classification Models for Reliability Distributions from the Perspective of Practical Implementation)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제13권1호
    • /
    • pp.195-202
    • /
    • 2011
  • The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.