• 제목/요약/키워드: Paramagnetic

검색결과 361건 처리시간 0.024초

NMR Studies on Transient Protein Complexes: Perspectives

  • Suh, Jeong-Yong;Yu, Tae-Kyung;Yun, Young-Joo;Lee, Ko On
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-4
    • /
    • 2014
  • It is generally understood that protein-protein interactions proceed via transient encounter complexes that rapidly evolve into the functional stereospecific complex. Direct detection and characterization of the encounter complexes, however, been difficult due to their low population and short lifetimes. Recent application of NMR paramagnetic relaxation enhancement first visualized the structures of the encounter complex ensemble, and allowed the characterization of their physicochemical properties. Further, rational protein mutations that perturbed the encounter complex formation provided a clue to the target search pathway during protein-protein association. Understanding the structure and dynamics of encounter complexes will provide useful information on the mechanism of protein association.

Electronic Structures of Giant Magnetocaloric $Gd_5Si_2Ge_2$ Alloy

  • Rhee, Joo-Yull
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권4호
    • /
    • pp.153-157
    • /
    • 2002
  • The electronic structures of Gd$_{5}$Si$_2$Ge$_2$ compound, which has a giant magnetocaloric effect, in the monoclinic and orthorhombic phases were calculated using the tight-binding linear-muffin-tin-orbital method within the atomic-sphere approximation. The calculated total energies of the monoclinic and orthorhombic structures in the paramagnetic phase confirm that the orthorhombic structure is more stable than monoclinic structure. The density of states (DOS) at the Fermi level of the orthorhombic phase is higher than that of the monoclinic phase in the paramagnetic phase, fulfilling the Stoner criterion. The calculated charge density verified the breaking of Ge(Si)-Ge(Si) bonding in the basal plane upon the orthorhombic-monoclinic phase transition. The DOS curve fairly well reproduces the photoemission spectrum.m.

  • PDF

Solution NMR spectroscopy for investigation of liquid-liquid phase separation

  • Saio, Tomohide;Okumura, Masaki;Lee, Young-Ho
    • 한국자기공명학회논문지
    • /
    • 제24권2호
    • /
    • pp.47-52
    • /
    • 2020
  • Liquid-liquid phase separation (LLPS) of biomolecules, a newly-found phase behavior of molecules in the liquid phase, has shown to its relationship to various biological function and misfolding diseases. Extensive studies have increasingly revealed a general mechanism of LLPS and characterized the liquid droplet; ho wever, intermolecular interactions of proteins and structural states of LLPS-inducing proteins inside of the droplet remain largely unknown. Solution NMR spectroscopy has emerged as a powerful approach as it provides invaluable information on protein intermolecular interactions and structures at the atomic and residue level. We herein comprehensively address useful techniques of solution NMR including the effect of paramagnetic relaxation enhancement for the study on the LLPS and droplet based on recent studies.

Pulsed Electron Paramagnetic Resonance Application on the Photoinduced Charge Separation of Alkylphenothiazine Derivatives in Molecular Assemblies

  • Kang, Young-Soo;Park, Chan-Young
    • 한국자기공명학회논문지
    • /
    • 제4권2호
    • /
    • pp.82-90
    • /
    • 2000
  • Photoinduced charge separation of alkylphenothiazines in molecular assemblies such as positively, negatively and neutrally charged micelle interface results in the paramagnetic phenothiazine cation radical. This was studied as a model system for the light energy conversion into chemical energy. The photoproduced phenothaizne cation radical was identified and its amount was quantized with electron spin resonance (ESR). The microenvironment of photoproduced cation radical was studied with pulsed-ESR. Such a charge separation is enhanced by the optimization of various structural factors of the molecular assemblies. The structural factors of molecular assemblies have focused on the interface charge, interface structure with different headgroups and interfacial perturbation by disolving interface active organic additives.

  • PDF

Development of a Wideband EPR Spectrometer with Microstrip and Loop Antennas

  • Ponomaryov, A.N.;Choi, K.Y.;Suh, B.J.;Jang, Z.H.
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.178-182
    • /
    • 2013
  • We have developed a new non-conventional electron paramagnetic resonance (EPR) spectrometer, in which no resonant cavity was used. We previously demonstrated a wide frequency range operation of an EPR spectrometer using two loop antennas, one for a microwave transmission and the other for signal detection [1]. In contrast to Ref. [1], the utilization of a microstrip antenna as a transmitter enhanced a capability of wide-band operation. The replacement of conventional capacitors with varactor diodes makes resonance condition easily reproducible without any mechanical action during tuning and matching procedure since the capacitance of the diodes is controlled electronically. The operation of the new EPR spectrometer was tested by measuring a signal of 1,1-diphenil-2-picrylhydrazyl (DPPH) sample in the frequency range of 0.8-2.5 GHz.

Activation Energy of 69Ga, 71Ga, and 75As Nuclei in GaAs:Mn2+ Single Crystal

  • Yeom, Tae Ho;Lim, Ae Ran
    • Journal of Magnetics
    • /
    • 제19권2호
    • /
    • pp.116-120
    • /
    • 2014
  • The spin-lattice relaxation time, $T_1$, for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei in GaAs:$Mn^{2+}$ single crystals was measured as a function of temperature. The values of $T_1$ for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei were found to decrease with increasing temperature. The $T_1$ values in GaAs:$Mn^{2+}$ crystal are similar to those in pure GaAs crystal. The calculated activation energies for the $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei are 4.34, 4.07, and 3.99 kJ/mol. It turns out that the paramagnetic impurity effect of $Mn^{2+}$ ion doped in GaAs single crystal was not strong on the spin-lattice relaxation time.

Effects of Axial Ligand Basicity on the Isotropic NMR Shifts in Pyridine-Type Ligands Coordinated to the Paramagnetic Polyoxometalate, $[SiW_{11}Co^{11}O_{39}]^{6-}$

  • 김지영;박석민;소현수
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권4호
    • /
    • pp.369-373
    • /
    • 1997
  • When 1H NMR spectra of pyridine, 4-amino-, 4-methyl-, and 4-cyanopyridine coordinated to the paramagnetic polyoxometalate, [SiW11CoⅡO39]6- in D2O are compared, both α- and β-proton peaks are shifted upfield as the basicity of the ligand decreases. The isotropic shifts are separated into contact and pseudocontact contributions by assuming that the contact shifts are proportional to the isotropic shifts of the same ligands coordinated to [SiW11NiⅡO39]6-. This separation reveals that the shift variations with the axial ligand basicity are dominated by changes in the magnetic anisotropy (pseudocontact shift) of [SiW11CoⅡ(ptl)O39]6- (ptl=pyridine-type ligand). The magnitude of the magnetic anisotropy in a series of pyridine-type ligands increases linearly as the pKa of their conjugate acids decreases.

Isotropic NMR Shifts in Some Pyridine-Type Ligands Complexed with Paramagnetic Undecatungstocobalto(Ⅱ)silicate and Undecatungstonickelo(Ⅱ) silicate Anions. Identifications of Dumbbell-Shaped 4,$4^{\prime}$-Bipyridyl Complexes

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.500-506
    • /
    • 1993
  • $^1H$ and $^{13}C$ NMR spectra for pyridine, ${\beta}$-and ${\gamma}$-picoline, pyrazine, and 4,4'-bipyridyl complexed with paramagnetic undecatungstocobalto(II)silicate and undecatungstonickelo(II)silicate anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines have been observed at room temperature. The isotropic shifts in nickel complexes can be interpreted in terms of contact shifts by ${\sigma}$-electron delocalization. Both contact and pseudocontact shifts contribute to the isotropic shifts in cobalt complexes. The contact shifts, which are obtained by subtracting the pseudocontact shifts from the isotropic shifts, require both ${\sigma}$-and ${\pi}$-electron delocalization from the cobalt ion. Slow ligand exchange has also allowed us to identify the species formed when bidentate ligands react with the heteropolyanions. Pyrazine forms a 1 : 1 complex, while 4,4'-bipyridyl forms both 1 : 1 and dumbbell-shaped 1 : 2 complexes.

$^1H$ NMR Spectra of Some Amines Coordinated to the Paramagnetic Polyoxometalate, $[SiW_{11}Co^{Ⅱ}O_{39}]^{6-}$

  • 김병안;소현수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권10호
    • /
    • pp.1145-1148
    • /
    • 1999
  • 1H NMR spectra of methyl-, ethyl-, propyl-, isopropyl-, butyl-, N-methylethyl-, N-methylpropyl-, and N-methylisopropylamine coordinated to the paramagnetic 11-tungstocobalto(II)silicate anion (SiW11Co) in dimethylsulfoxide-d6 or dimethylformamide-d7 are reported. For these complexes the ligand exchange is slow on the NMR time scale and pure 1H NMR signals have been observed at room temperature. No complex is detected in D2O. From the pseudocontact shifts of the CH2 and CH3 groups in ethylamine the energy of the gauche conformers with respect to the anti conformer is estimated. Two diastereotopic protons in the CH2 group of N-methylethylamine have quite different chemical shifts especially at low temperatures (e.g. 48.5 vs. 19.4 ppm at -10℃). This may be attributed mainly to the different positions of the two protons in the most stable (gauche) conformer.

¹H NMR Study of Pyridine-Type Ligands Coordinated to the Paramagnetic $[Ni_3(PW_9O_{34})_2]^{12-}$ Anion

  • 우한영;김지영;소현수
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권12호
    • /
    • pp.1176-1179
    • /
    • 1995
  • 1H NMR spectra of pyridine, α-, β-, and γ-picoline coordinated to the paramagnetic heteropolyanion [Ni3(PW9O34)2]12- (P2Ni3) are reported. NMR lines are assigned to [Ni3(ptl)n(PW9O34)2]12- (n=1, 2 or 3; ptl=pyridine-type ligand) on the basis of their [P2Ni3]/[ptl] dependence. The formation constants for γ-picoline complexes at 25 ℃ are K1=80, K2=610, and K3=190 L mol-1. The monopicoline complex has greater affinity for γ-picoline than P2Ni3. A degradation product, [Ni2(WO2)(PW9O34)2]12-, was also identified at low pH by measuring the NMR spectrum of pyridine coordinated to it. The isotropic NMR shifts come mainly from the contact interaction due to σ-electron delocalization.