DOI QR코드

DOI QR Code

Solution NMR spectroscopy for investigation of liquid-liquid phase separation

  • Saio, Tomohide (Department of Chemistry, Faculty of Science, Hokkaido University) ;
  • Okumura, Masaki (Frontier Research Institute for Interdisciplinary Sciences, Tohoku University) ;
  • Lee, Young-Ho (Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI))
  • Received : 2020.06.17
  • Accepted : 2020.06.19
  • Published : 2020.06.20

Abstract

Liquid-liquid phase separation (LLPS) of biomolecules, a newly-found phase behavior of molecules in the liquid phase, has shown to its relationship to various biological function and misfolding diseases. Extensive studies have increasingly revealed a general mechanism of LLPS and characterized the liquid droplet; ho wever, intermolecular interactions of proteins and structural states of LLPS-inducing proteins inside of the droplet remain largely unknown. Solution NMR spectroscopy has emerged as a powerful approach as it provides invaluable information on protein intermolecular interactions and structures at the atomic and residue level. We herein comprehensively address useful techniques of solution NMR including the effect of paramagnetic relaxation enhancement for the study on the LLPS and droplet based on recent studies.

Keywords

References

  1. S. Chong, C. Dugast-Darzacq, Z. Liu, P. Dong, G.M. Dailey, C. Cattoglio, A. Heckert, S. Banala, L. Lavis, X. Darzacq, R. Tjian, Science 361, (2018)
  2. P. Li, S. Banjade, H.C. Cheng, S. Kim, B. Chen, L. Guo, M. Llaguno, J.V. Hollingsworth, D.S. King, S.F. Banani, P.S. Russo, Q.X. Jiang, B.T. Nixon, M.K. Rosen, Nature 483, 336 (2012) https://doi.org/10.1038/nature10879
  3. W.Y.C. Huang, S. Alvarez, Y. Kondo, Y.K. Lee, J.K. Chung, H.Y.M. Lam, K.H. Biswas, J. Kuriyan, J.T. Groves, Science 363, 1098 (2019) https://doi.org/10.1126/science.aau5721
  4. T.M. Franzmann, M. Jahnel, A. Pozniakovsky, J. Mahamid, A.S. Holehouse, E. Nuske, D. Richter, W. Baumeister, S.W. Grill, R.V. Pappu, A.A. Hyman, S. Alberti, Science, 359. (2018)
  5. M. Du, Z.J. Chen, Science 361, 704 (2018) https://doi.org/10.1126/science.aat1022
  6. M. Feric, N. Vaidya, T.S. Harmon, D.M. Mitrea, L. Zhu, T.M. Richardson, R.W. Kriwacki, R.V. Pappu, C.P. Brangwynne, Cell 165, 1686 (2016) https://doi.org/10.1016/j.cell.2016.04.047
  7. A.R. Strom, A.V. Emelyanov, M. Mir, D.V. Fyodorov, X. Darzacq, G.H. Karpen, Nature 547, 241 (2017) https://doi.org/10.1038/nature22989
  8. E. Boke, M. Ruer, M. Wuhr, M. Coughlin, R. Lemaitre, S.P. Gygi, S. Alberti, D. Drechsel, A.A. Hyman, T.J. Mitchison, Cell 166, 637 (2016) https://doi.org/10.1016/j.cell.2016.06.051
  9. C.P. Brangwynne, C.R. Eckmann, D.S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Julicher, A.A. Hyman, Science 324, 1729 (2009) https://doi.org/10.1126/science.1172046
  10. A. Aguzzi, M. Altmeyer, Trends Cell Biol. 26, 547 (2016) https://doi.org/10.1016/j.tcb.2016.03.004
  11. A. Patel, H.O. Lee, L. Jawerth, S. Maharana, M. Jahnel, M.Y. Hein, S. Stoynov, J. Mahamid, S. Saha, T.M. Franzmann, A. Pozniakovski, I. Poser, N. Maghelli, L.A. Royer, M. Weigert, E.W. Myers, S. Grill, D. Drechsel, A.A. Hyman, S. Alberti, Cell 162, 1066 (2015) https://doi.org/10.1016/j.cell.2015.07.047
  12. M. Kato, T.W. Han, S. Xie, K. Shi, X. Du, L.C. Wu, H. Mirzaei, E.J. Goldsmith, J. Longgood, J. Pei, N.V. Grishin, D.E. Frantz, J.W. Schneider, S. Chen, L. Li, M.R. Sawaya, D. Eisenberg, R. Tycko, S.L. McKnight, Cell 149, 753 (2012) https://doi.org/10.1016/j.cell.2012.04.017
  13. D.T. Murray, M. Kato, Y. Lin, K.R. Thurber, I. Hung, S.L. McKnight, R. Tycko, Cell 171, 615 (2017) https://doi.org/10.1016/j.cell.2017.08.048
  14. K.A. Burke, A.M. Janke, C.L. Rhine, N.L. Fawzi, Mol. Cell 60, 231 (2015) https://doi.org/10.1016/j.molcel.2015.09.006
  15. A.C. Murthy, G.L. Dignon, Y. Kan, G.H. Zerze, S.H. Parekh, J. Mittal, N.L. Fawzi, Nat. Struct. Mol. Biol. 26, 637 (2019) https://doi.org/10.1038/s41594-019-0250-x
  16. V.H. Ryan, G.L. Dignon, G.H. Zerze, C.V. Chabata, R. Silva, A.E. Conicella, J. Amaya, K.A. Burke, J. Mittal, N.L. Fawzi, Mol. Cell 69, 465 (2018) https://doi.org/10.1016/j.molcel.2017.12.022
  17. T. Saio, K. Ishimori, Biochim. Biophys. Acta. Gen. Subjects 1864, 129332 (2020) https://doi.org/10.1016/j.bbagen.2019.03.018
  18. T. Sugiki, Y.H. Lee, J. Kor. Magn. Reson. Soc. 22, 76 (2018) https://doi.org/10.6564/JKMRS.2018.22.4.076
  19. A.E. Conicella, G.H. Zerze, J. Mittal, N.L. Fawzi, Structure 24 1537 (2016) https://doi.org/10.1016/j.str.2016.07.007
  20. M. Clore, J. Iwahara, Chem. Rev. 109, 4108 (2009) https://doi.org/10.1021/cr900033p
  21. S. Boeynaems, S. Alberti, N.L. Fawzi, T. Mittag, M. Polymenidou, F. Rousseau, J. Schymkowitz, J. Shorter, B. Wolozin, L. Van Den Bosch, P. Tompa, M. Fuxreiter, Trends Cell Biol. 28, 420 (2018) https://doi.org/10.1016/j.tcb.2018.02.004
  22. T.J. Nott, E. Petsalaki, P. Farber, D. Jervis, E. Fussner, A. Plochowietz, T.D. Craggs, D.P. Bazett-Jones, T. Pawson, J.D. Forman-Kay, A.J. Baldwin, Mol. Cell 57, 936 (2015) https://doi.org/10.1016/j.molcel.2015.01.013
  23. Clifford P. Brangwynne, P. Tompa, Rohit V. Pappu, Nat. Phys. 11, 899 (2015) https://doi.org/10.1038/nphys3532