DOI QR코드

DOI QR Code

Activation Energy of 69Ga, 71Ga, and 75As Nuclei in GaAs:Mn2+ Single Crystal

  • Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Lim, Ae Ran (Department of Science Education, Jeonju University)
  • Received : 2014.02.08
  • Accepted : 2014.04.20
  • Published : 2014.06.30

Abstract

The spin-lattice relaxation time, $T_1$, for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei in GaAs:$Mn^{2+}$ single crystals was measured as a function of temperature. The values of $T_1$ for $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei were found to decrease with increasing temperature. The $T_1$ values in GaAs:$Mn^{2+}$ crystal are similar to those in pure GaAs crystal. The calculated activation energies for the $^{69}Ga$, $^{71}Ga$, and $^{75}As$ nuclei are 4.34, 4.07, and 3.99 kJ/mol. It turns out that the paramagnetic impurity effect of $Mn^{2+}$ ion doped in GaAs single crystal was not strong on the spin-lattice relaxation time.

Keywords

References

  1. S. M. Sze, Semiconductor Devices: An Introduction, McGraw-Hill, New York, 1994.
  2. X. A. Zhu and C. T. Tsai, Computational Materials Science 29, 334 (2004). https://doi.org/10.1016/j.commatsci.2003.10.010
  3. Y. Q. Wua and H. Huang, J. Zou, Materials Letters 80, 187 (2012). https://doi.org/10.1016/j.matlet.2012.04.057
  4. T. T. Kajara and A. L. Gaeta, Opt. Lett. 21, 1244 (1996). https://doi.org/10.1364/OL.21.001244
  5. S. Y. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005). https://doi.org/10.1063/1.1957123
  6. D. Li, S. Zhao, G. Li, and K. Yang, Optik 121, 478 (2010). https://doi.org/10.1016/j.ijleo.2008.08.001
  7. H. Qi, Q. Wang, X. Zhang, Z. Liu, S. Zhang, J. Chang, W. Xia, and G. Jin, Optics and Lasers in Engineering 49, 285 (2011). https://doi.org/10.1016/j.optlaseng.2010.10.004
  8. C. del Papa, P. G. Pelfer, and K. Smith, Erice (Eds.), Proceedings of the 20th Workshop on GaAs Detectors and Electronics for High Energy Physics, World Scientific, Singapore (1992).
  9. Experiments at CERN in 1993, Geneve 1993, ISSN 0259-093X.
  10. D. S. Mc Gregor, J. T. Lindsay, C. C. Brannon, and R. W. Owses, IEEE Trans. Nucl. Sci. 43, 1357 (1996). https://doi.org/10.1109/23.507065
  11. D. S. Mc Gregor, J. T. Lindsay, C. C. Brennon, and R. W. Olsen, Nucl. Instr. and Meth. A 380, 271 (1996). https://doi.org/10.1016/S0168-9002(96)00347-6
  12. J. J. Lion, and W. W. Wong, Solar Energy Mater. Solar Cells 28, 9 (1992). https://doi.org/10.1016/0927-0248(92)90104-W
  13. N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, and J. C. Clark, G. Hill, M. Mazzer, Appl. Phys. Lett. 75, 4195 (1999). https://doi.org/10.1063/1.125580
  14. M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, Progr. Photovoltaics: Res. Appl. 14, 455 (2006). https://doi.org/10.1002/pip.720
  15. M. G. Brik and A. M. Srivastava, Optical Materials, 35, 1776 (2013). https://doi.org/10.1016/j.optmat.2013.02.022
  16. A. Majid, M. Z. Iqbal, A. Dadgar, and D. Bimberg, Physica B 340, 362 (2003).
  17. S. Khelifi, M. Burgelman, J. Verschraegen, and A. Belghachi, Solar Energy Materials & Solar Cells 92, 1559 (2008). https://doi.org/10.1016/j.solmat.2008.07.003
  18. D. Burger, S. Zhou, J. Grenzer, H. Reuther, W. Anwand, V. Gottschalch, M. Helm, and H. Schmidt, Nucl. Instr. and Meth. in Physics Research B 267, 1626 (2009). https://doi.org/10.1016/j.nimb.2009.01.066
  19. Yu. A. Danilov, V. P. Lesnikov, Yu. N. Nozdrin, V. V. Podolskii, M. V. Sapozhnikov, O. V. Vikhrova, and B. N. Zvonkov, J. Magn. And Magn. Materials 300, e28 (2006). https://doi.org/10.1016/j.jmmm.2005.11.014
  20. S. H. Lee, T. H. Yeom, and S. Kim, J. Magn. 17, 251 (2012). https://doi.org/10.4283/JMAG.2012.17.4.251
  21. J. S. Colton, T. A. Kennedy, A. S. Bracker, and J. B. Miller, D. Gammon, Solid State Commun. 132, 613 (2004). https://doi.org/10.1016/j.ssc.2004.08.039
  22. Y. J. Park, E. K. Kim, S. K. Min, I. W. Park, and T. H. Yeom, J. Korean Phys. Soc. 30, S113 (1997).
  23. Q. Song, K. H. Chow, M. D. Hossain, R. F. Kiefl, G. D. Morris, C. D. P. Levy, H. Saadaoui, M. Smadella, D. Wang, B. Kardasz, B. Heinrich, and W. A. MacFarlane, Physics Procedia 30, 227 (2012). https://doi.org/10.1016/j.phpro.2012.04.079
  24. D. A. Alexson and D. D. Smith, J. Magn. Reson. 235, 66 (2013). https://doi.org/10.1016/j.jmr.2013.07.013
  25. T. H. Yeom, I. G. Kim, S. H. Choh, K. S. Hong, Y. J. Park, and S. K. Min, Solid State Commun. 111, 229 (1999). https://doi.org/10.1016/S0038-1098(99)00096-4
  26. A. Abragam, The Principles of Nuclear Magnetism, Chap. IX, Oxford University Press, Oxford (1961).
  27. J. J. van der Klink, D. Rytz, F. Borsa, and U. T. Hochli, Phys. Rev. B27, 89 (1983). https://doi.org/10.1103/PhysRevB.27.89
  28. A. R. Lim and S. Y. Jeong, J. Phys.: Condens. Matter 16, 4403 (2004). https://doi.org/10.1088/0953-8984/16/25/001