• Title/Summary/Keyword: Parallel machine tool

Search Result 72, Processing Time 0.028 seconds

Steam Turbine Stage Design Using Flow Analysis (유동 해석을 이용한 증기 터빈 Stage 설계)

  • Kwon, G.B.;Kim, Y,S.;Cho, S.H.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.309-314
    • /
    • 2001
  • The high efficient steam turbine stage has been analyzed with the help of the 3-dimensional analysis tool. To increase the efficiency of steam turbine stage, the nozzle has to be designed by using the 3-dimensional stacking method. And the bucket has to be designed to cope with the exit flow of nozzle. To verify the stage design, therefore, the numerical analysis of the steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the steam flow of the steam turbine stage. The numerical analysis was performed in parallel calculation by using the HP N4000 8 CPUs machine. The result showed the numerical analysis could be used to help to design the steam turbine stage.

  • PDF

A Study on the Gas Wave Propagation in the Pipe by Numerical analysis (수치해석에 의한 파이프에서의 가스파동전하에 관한 연구)

  • 김명균
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.154-160
    • /
    • 1998
  • This study describes a theoretical and experimental investigation of gas wave propagation in the pipe system. Most calculations of compressible flows in the pipe have been based on the method of characteristics. This technique has propensity to truncate waves and is difficult to apply to non-perfect gas. A method that describes the application of a two-step Lax-Wendroff acheme to solution of the unsteady one-dimentional flow in the pipe was developed. Theoretical calculations using both the method of characteristics and the two-step Lax-Wendroff method are presented including a realistic model for heat transfer and friction processes. In the present work, account is taken of the nonlinear behavior. For sections of parallel pipe, an one dimensional unsteady homentropic analysis is employed, and a numerical solution is obtained with the aid of a digital computer, using the method of characteristics and two-step Lax-Wendroff method. This analysis is then combined with boundary models, based on a quasi-steady flow approach, to give a complete treatment of the flow behavior in the pipe system.

  • PDF

A Study on Molding Process Fiber Reinforced Plastic Composites (Flow analysis Measurement of viscosity of Unidirectional Fiber Reinforced Plastic Composites) (섬유강화 플라스틱 복합재의 성형공정에 관한 연구(일방향 섬유강화 복합재의 점도측정 및 유동해석))

  • 조선형;안종윤;이국웅;윤성운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • During a compression molding process of Unidirectional Fiber Reinforced Plastic Composites, control of filling patterns in mold and distribution of fiber is needed to predict the effects of molding parameters on the flow characteristics. To obtain an excellent product and decide optimum molding conditions, it is important to know the relationship between molding conditions and viscosity. In this study, the anisotropic viscosity of the Unidirectional Fiber Reinforced Plastic Composites is measured by using the parallel plastometer. The model for flow state has been simulated by using the viscosity. The composites is treated as an incompressible New-tonian fluid. The effects of longitudinal/transverse viscosity ration A and slip parameter $\alpha$ on buldging phenomenon and mold filling patterns, are also discussed.

  • PDF

Measurement of Spherical Aberration and Light Concentrating Efficiency of Lens by Using Thermocouple (열전대를 이용한 광학렌즈의 구면수차와 집광성능 측정)

  • Kim, Han-Seob;Park, Kyu-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.172-177
    • /
    • 2007
  • In this paper, spherical aberration and light concentrating efficiency of lens was measured. The measuring system is applying spherical aberration occurrence principal and could measure a temperature at focal plane by using the thermocouple. The sun which is located in infinite distance and could makes parallel ray is used as a illuminant or heat source in experiments. It is confirmed that light concentrating efficiency of optical lens is in inverse proportion to spherical aberration and.

Research for Patent Application Tendency in the High Reliable Machining Center for Making of Ultra Precisional Component (고정밀 부품 가공을 위한 고유연성 머시닝센터의 특허동향 분석에 관한 연구)

  • Kim, Seung-Min;Ko, Jun-Bin;Park, Hee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • This paper research the trend of technology of the high efficient and reliability machining center and high flexibility parallel manipulator machining center including linear motor machining center, submicron machining center and direct drive 5 axis machining center using patent information of Korea, U.S.A, Japan and Europe. By using this, the technique level of Korea, the International trend of technology and condition of cooperation research was estimated and the necessity of research and development performance about the machining center for the IT part processing were inquired.

Development of Multi-Axis Ultra Precision Stage for Optical Alignment (광소자 정렬용 초정밀 다축 스테이지 개발)

  • 정상화;이경형;김광호;차경래;김현욱;최석봉;박준호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.213-218
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

Experimental Investigation on the Flow Characteristics of ER Fluids (ER유체의 유동특성에 관한 실험적 연구)

  • 김도태;장성철;최윤대
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.216-221
    • /
    • 1999
  • Electrorheological fluids (ERF) are suspensions which show an abrupt increase in rheological properties under electric fields. The rheological response is very rapid and reversible when the electric field is imposed and/or removed. Therefore, there are many practical applications using the ERF. The purpose of the present study is to examine the flow characteristics of ERF. First, the microscopic behavior of the ER suspension structure between two fixed parallel-plate brass electrodes applied dc high voltage for the stationary and flow of the ERF was investigated by flow visualization. The electrical and rheological properties of zeolite based ERF were reported.

  • PDF

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

A Study of the Non-Contact Bill Counter using Optical Fiber Sensor (광섬유 센서를 이용한 지폐 계수 장치에 관한 연구)

  • Kang, Dae-Hwa;Shin, Woo-Cheol;Song, Doo-Sang;Jang, Tak-Soon;Hong, June-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.231-236
    • /
    • 2007
  • In this paper, we studied the possibility of non-contact bill counting method using optical fiber sensor instead of traditionally used friction counting method. To implement non-contact counting, we designed and made optical fiber sensor and related parts. optical fiber sensor is made of optical fiber of 1mm diameter, photo diode and laser diode. Based on the conclusion which derived from preliminary experiment, instrument part is designed to make unevenness on the surface of bill paper and to stay parallel with optical fiber section. By analyzing the signal of optical sensor, we made counting program. Experimental instrument is composed of sensor part, instrument part, signal handling part. We checked the possibility of non-contact counting method after implementing experiment by using optical fiber sensor and instrument part.

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.