• 제목/요약/키워드: Parallel Hybrid Electric Vehicle

검색결과 60건 처리시간 0.02초

Operation Algorithm for a Parallel Hybrid Electric Vehicle with a Relatively Small Electric Motor

  • Kyoungcheol Oh;Kim, Donghyeon;Kim, Talchol;Kim, Chulsoo;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.30-36
    • /
    • 2004
  • In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the power assist and the equivalent fuel algorithms are proposed. In the power assist algorithm, an electric motor is used to assist the engine which provides the primary power source. Tn the equivalent fuel algorithm, the electric energy stored in the battery is considered to be an equivalent fuel, and an equivalent brake specific fuel consumption for the electric energy is proposed. From the equivalent fuel algorithm, distribution of the engine power and the motor power is determined to minimize the fuel consumption for a given battery state of charge (SOC) and a required vehicle power. It is found from the simulation results that the fuel economy and the final battery SOC depend on the motor discharge energy and it is the best way to charge the battery only by the regenerative braking, not by the engine to improve the overall fuel efficiency of the HEV with the relatively small motor.

직렬형 HEV의 엔진/발전기-배터리 연계운전 방안 (The Scheme for Efficient Driving of Engine/Generator-Battery in Series HEV)

  • 박영수;허민호;안재영;강신영;김광헌
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.423-426
    • /
    • 1999
  • This paper describes a driving scheme of the series hybrid electric vehicle that we have developed. Both series HEV and parallel HEV are well known. We chose series HEV because it provides good energy efficiency in urban driving and operates in all-electric mode in performance. And engine-Generator is driven at constant speed with constant load to maintain the low emission. And the battery supplies power during high-load and receive energy during low-load

  • PDF

중형저상버스 병렬형 하이브리드화를 위한 동력전달계 용량매칭 (Components sizing of powertrain for a Parallel Hybridization of the Mid-size Low-Floor Buses)

  • 김기수;박영일;노윤식;정재욱
    • 한국산학기술학회논문지
    • /
    • 제17권8호
    • /
    • pp.582-594
    • /
    • 2016
  • 그 동안 하이브리드 버스에 대한 연구로 플러그인 하이브리드, 직렬형, 병렬형 하이브리드 등에 대한 연구가 많이 진행되어져 왔다. 하지만 연구가 진행된 대부분의 차량들은 대형 버스이며 현재 국내에는 중형저상버스에 대한 연구는 전무한 실정이다. 또한 중형저상버스의 하이브리드화에 대한 연구 역시 미미한 실정이다. 본 논문은 MATLAB을 이용한 시뮬레이션을 통해 디젤 중형저상버스의 연비 평가를 수행하였으며, 이를 하이브리드화하였을 경우에 대한 최적의 용량 조합과 기어비를 제시하고 내연기관 시뮬레이션 연비 결과와 비교 분석하였다. 하이브리드화를 위한 구조로 전륜과 후륜이 독립적으로 동력을 전달하는 병렬형 하이브리드 시스템을 선택하였다. 동력원 용량 설계를 위해 목표 성능을 만족하는 요구파워를 계산하여 적용 가능한 동력원 용량 영역을 설계하였다. 설계 영역을 만족하는 각 단품들의 용량은 스케일링하여 구성하였으며, 엔진과 모터에 대한 동력 전달계의 용량 설계 알고리즘을 제시하고 동적 계획법을 이용하여 최적화를 수행하였다. 최종적으로 본 연구를 통해 내연기관 차량인 중형저상버스를 하이브리드화하였을 경우에 대한 연비 향상률과 최적의 동력원 용량, 기어비를 제시하였다.

하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구 (Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems)

  • 오현종;박성진
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

A Study on Regenerative Braking for a Parallel Hybrid Electric Vehicle

  • 장성욱;예훈;김철수;김현수
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1490-1498
    • /
    • 2001
  • In this paper, a regenerative braking algorithm is presented and performance of a hybrid electric vehicle (HEV) is investigated. The regenerative braking algorithm calculates the available regenera tive braking torque by considering the motor characteristics, the battery SOC and the CVT speed ratio. When the regenerative braking and the friction braking are applied simultaneously, the friction braking torque corresponding to the regenerative braking should be reduced by decreasing the hydraulic pressure at the front wheel. To implement the regenerative braking algorithm, a hydraulic braking module is designed. In addition, the HEV powertrain models including the internal combustion engine, electric motor, battery, CVT and the regenerative braking system are obtained using AMESim, and the regenerative braking performance is investigated by the simulation. Simulation results show that the proposed regenerative braking algorithm contributes to increasing the battery SOC which results in the improved fuel economy. To verify the regenerative braking algorithm, an experimental study is performed. It is found from the experimental results that the regenerative braking hydraulic module developed in this study generates the desired front wheel hydraulic pressure specified by the regenerative braking control algorithm.

  • PDF

상용 병렬형 하이브리드 시스템의 동력원 용량에 따른 연비 및 비용의 상관관계 분석 (Analysis of Correlation of Fuel Efficiency and Cost Depending on Component Size of Heavy-duty Parallel Hybrid System)

  • 정종렬;이대흥;신창우;임원식;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.73-82
    • /
    • 2011
  • Most of countries start to restrict the emission gases of vehicles especially CO2 because of the global warming. Many vehicle companies including Toyota have launched various HEVs to satisfy the restriction laws and to improve the vehicle's efficiency. However, development for heavy-duty hybrid system is not plentiful rather than the passenger car. In this study, we choose the optimal size of engine, motor and battery for heavy-duty hybrid systems using dynamic programming. Also we analyze the correlation of the system's cost and efficiency because the added cost of vehicle to make the hybrid system is very important factor for the manufacturing companies. Finally, this study suggests a method to choose the appropriate system components size considering its performance and the cost. With this method, it is possible to select the component size for various systems.

HARDWARE IN THE LOOP SIMULATION OF HYBRID VEHICLE FOR OPTIMAL ENGINE OPERATION BY CVT RATIO CONTROL

  • Yeo, H.;Song, C.H.;Kim, C.S.;Kim, H.S.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.201-208
    • /
    • 2004
  • Response characteristics of the CVT system for a parallel hybrid electric vehicle (HEV) are investigated. From the experiment, CVT ratio control algorithm for the optimal engine operation is obtained. To investigate the effect of the CVT system dynamic characteristics on the HEV performance, a hardware in the loop simulation (HILS) is performed. In the HILS, hardwares of the CVT belt-pulley and hydraulic control valves are used. It is found that the engine performance by the open loop CVT ratio control shows some deviation from the OOL in spite of the RCVs open loop control ability. To improve the engine performance, a closed loop control of the CVT ratio is proposed with variable control gains depending on the shift direction and the CVT speed ratio range by considering the nonlinear characteristics of the RCV and CVT belt-pulley dynamics. The HILS results show that the engine performance is improved by the closed loop control showing the operation trajectory close to the OOL.

병렬형 마일드 하이브리드 차량에 대한 운전전략 비교연구 (Comparative Study of Control Strategies for a Parallel Mild Hybrid Electric Vehicle)

  • 기영훈;유춘영;문찬우;정구민;안현식;김도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.241-242
    • /
    • 2007
  • 병렬형 마일드 HEV(Hybrid Electric Vehicles)는 동력변환과정이 적어 구동계 전체의 효율이 직렬형에 비해 우수하고 다양한 구조를 가질 수 있으며 기존차량에 적용하기 쉽다는 장점이 있으나 구조 및 제어가 복잡하다. 따라서 병렬형 마일드 HEV의 성능을 예측하고 적절한 제어기를 설계하기 위해서는 구성요소의 종류 및 규격과 제어전략에 따른 HEV의 성능을 해석할 수 있는 체계적인 방법이 필요하다. 따라서 본 논문에서는 Simulink 소프트웨어를 이용한 모듈화 모델링에 의하여 병렬형 HEV의 구성요소를 모델링하고 이로부터 병렬형 HEV의 성능해석 및 운전제어전략의 특성을 비교할 수 있도록 한다.

  • PDF

TRADE-OFFS BETWEEN FUEL ECONOMY AND NOX EMISSIONS USING FUZZY LOGIC CONTROL WITH A HYBRID CVT CONFIGURATION

  • Rousseau, A.;Saglini, S.;Jakov, M.;Gray, D.;Hardy, K.
    • International Journal of Automotive Technology
    • /
    • 제4권1호
    • /
    • pp.47-55
    • /
    • 2003
  • The Center for Transportation Research at the Argonne National Laboratory (ANL) supports the DOE by evaluating advanced automotive technologies in a systems context. ha has developed a unique set of compatible simulation tools and test equipment to perform an integrated systems analysis project from modeling through hardware testing and validation. This project utilized these capabilities to demonstrate the trade-off in fuel economy and Oxides of Nitrogen (NOx) emissions in a so-called ‘pre-transmission’ parallel hybrid powertrain. The powertrain configuration (in simulation and on the dynamometer) consists of a Compression Ignition Direct Ignition (CIDI) engine, a Continuously Variable Transmission (CVT) and an electric drive motor coupled to the CVT input shaft. The trade-off is studied in a simulated environment using PSAT with different controllers (fuzzy logic and rule based) and engine models (neural network and steady state models developed from ANL data).

Individual Charge Equalization Converter with Parallel Primary Winding of Transformer for Series Connected Lithium-Ion Battery Strings in an HEV

  • Kim, Chol-Ho;Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.472-480
    • /
    • 2009
  • In this paper, a charge equalization converter with parallel-connected primary windings of transformers is proposed. The proposed work effectively balances the voltage among Lithium-Ion battery cells despite each battery cell has low voltage gap compared with its state of charge (SOC). The principle of the proposed work is that the equalizing energy from all battery strings moves to the lowest voltage battery through the isolated dc/dc converter controlled by the corresponding solid state relay switch. For this research a prototype of four Lithium-Ion battery cells is optimally designed and implemented, and experimental results show that the proposed method has excellent cell balancing performance.