• 제목/요약/키워드: Paracrine

검색결과 117건 처리시간 0.025초

The Localization of Cytokeratin 19 and Vimentin in Sprague Dawley Albino Rat Skin Tissue

  • Kim, Tae Keun;Kim, Yong Joo;Min, Byoung Hoon;Kim, Soo Jin
    • Applied Microscopy
    • /
    • 제44권1호
    • /
    • pp.15-20
    • /
    • 2014
  • Cytokeratin 19 (CK19) expressed in epidermis of skin, bulge region of hair follicle, outermost layer of outer root sheath and proximal and distal to bulge. Vimentin is a fibrous protein that localized in cytoplasm of fibroblast and forms cytoskeleton to maintain shape of cell and nucleus. In this study, CK19 and vimentin in skin were confirmed with light, fluorescence and transmission electron microscope. As a result, CK19 was localized epidermis, hair follicles, outer root sheath and nucleus of Merkel's cell. However, vimentin was localized some epidermis, dermis, hypodermis and nucleus of Merkel's cell. The role of CK19 is self-renewal and homeostasis in skin. Also, hair follicle regeneration and hair growth is known to be related. It is supposed that required of structural proteins that make up cytoskeleton is increased. Thereby, expression of CK19 is increased. It is considered that vimentin localized in order to stabilize structure of cell and cytoskeleton of fibroblasts. Also, CK19 and vimentin present in nuclei of Merkel's cell, and to act as a fibrous protein that make up end of a nerve fiber present in Merkel's cell and paracrine function of Merkel's cell.

連翹敗毒散이 사람 기관지 상피세포의 TARC 분비에 미치는 효과 (Effect of Youn-Gyo-Pae-Doc-San on the Release of Thymus and Activation-Regulated Chemokine(TARC) in Human Bronchial Epithelial Cell)

  • 이경엽;김희택;김이화;남창규;류주현
    • 한방안이비인후피부과학회지
    • /
    • 제16권3호
    • /
    • pp.82-95
    • /
    • 2003
  • Chemokines are important for the recruitment of leukocytes to sites of infection, which is essential in host defense. The thymus and activation-regulated chemokine (TARC) is a CC chemokine which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Objectives : The objective of this study is to investigate the effect of Youn-Gyo-Pae-Doc-San on the secretion of TARC of human bronchial epithelial cell Methods : Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of TARC. The cytotoxicity was measured by MTT assay. Results : Youn-Gyo-Pae-Doc-San significantly inhibited the secretion of TARC with a dose -dependant manner. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell. Conclusions : Results of our study show that Youn-Gyo-Pae-Doc-San would play an important role in modulation of TARC in human bronchial epithelial cells.

  • PDF

마황(麻黃) 약침액(藥鍼液)이 사람 기관지 상피세포의 TARC 분비에 미치는 효과 (Effect of Ephedrae Herbal Acupuncture Solution(EHS) on the Release of Thymus and Activation-Regulated Chemokine (TARC) in Human Bronchial Epithelial Cell)

  • 주유적;서정철;임성철;정태영;한상원
    • Korean Journal of Acupuncture
    • /
    • 제22권1호
    • /
    • pp.23-32
    • /
    • 2005
  • Chemokines are important for the recruitment of leukocytes, which is essential in host defense to the sites of infection. The thymus and activation-regulated chemokine (TARC) is a CC chemokine which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Objectives : The objective of this study is to investigate the effect of Ephedrae Herba Herbal Acupuncture Solution(EHS) on the secretion of TARC of human bronchial epithelial cell. Methods : Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of TARC. The cytotoxicity was measured by MTT assay. Results : EHS significantly inhibited the secretion of TARC with a dose-dependant manner. The effective dosage did not have the cytotoxicity on human bronchial epithelial cell. Conclusion : Results of our study imply that EHS would play an important role in modulation of TARC in human bronchial epithelial cells by MTT assay.

  • PDF

Involvement of Nitric Oxide During In Vitro Fertilization and Early Embryonic Development in Mice

  • Kim, Bo-Hyun;Kim, Chang-Hong;Jung, Kyu-Young;Jeon, Byung-Hun;Ju, Eun-Jin;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.86-93
    • /
    • 2004
  • Nitric oxide (NO) has emerged as an important intracellular and intercellular messenger, controlling many physiological processes and participating in the fertilization process via the autocrine and paracrine mechanisms. This study investigated whether nitric oxide synthase (NOS) inhibitior (L-NAME) and L-arginine could regulate in vitro fertilization and early embryonic development in mice. Mouse epididymal spermatozoa, oocytes, and embryos were incubated in mediums of variable conditions with and without L-NAME or L-arginine (0.5, 1, 5 and 10mM). Fertilization rate and early embryonic development were significantly inhibited by treating sperms or oocytes with L-NAME (93.8% vs 66.3%,92.1% vs 60.3%), but not with L-arginine. In contrast, fertilization rate and early embryonic development were conspicuously reduced when L-NAME or L-arginine was added to the culture media for embryos. Early embryonic development was inhibited by microinjection of L-NAME into the fertilized embryosin a dose-dependent manner, but only by high concentrations of L-arginine. These results suggest that a moderate amount of NO production is essential for fertilization and early embryo development in mice.

Udenafil Induces the Hair Growth Effect of Adipose-Derived Stem Cells

  • Choi, Nahyun;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • 제27권4호
    • /
    • pp.404-413
    • /
    • 2019
  • Udenafil, which is a $PDE_5$ inhibitor, is used to treat erectile dysfunction. However, it is unclear whether udenafil induces hair growth via the stimulation of adipose-derived stem cells (ASCs). In this study, we investigated whether udenafil stimulates ASCs and whether increased growth factor secretion from ASCs to facilitate hair growth. We found that subcutaneous injection of udenafiltreated ASCs accelerated telogen-to-anagen transition in vivo. We also observed that udenafil induced proliferation, migration and tube formation of ASCs. It also increased the secretion of growth factors from ASCs, such as interleukin-4 (IL-4) and IL12B, and the phosphorylation of ERK1/2 and $NF{\kappa}B$. Furthermore, concomitant upregulation of IL-4 and IL12B mRNA levels was attenuated by ERK inhibitor or $NF{\kappa}B$ knockdown. Application of IL-4 or IL12B enhanced anagen induction in mice and increased hair follicle length in organ culture. The results indicated that udenafil stimulates ASC motility and increases paracrine growth factor, including cytokine signaling. Udenafil-stimulated secretion of cytokine from ASCs may promote hair growth via the ERK and $NF{\kappa}B$ pathways. Therefore, udenafil can be used as an ASC-preconditioning agent for hair growth.

Mesenchymal stem cells in the treatment of osteonecrosis of the jaw

  • Nifosi, Gianfilippo;Nifosi, Lorenzo;Nifosi, Antonio Fabrizio
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제47권2호
    • /
    • pp.65-75
    • /
    • 2021
  • Medication-related osteonecrosis of the jaw (MRONJ) has recently associated to the increase in antiresorptive and anti-angiogenic drugs prescriptions in the treatment of oncologic and osteoporotic patients. The physiopathogenesis of MRONJ remains unclear and available treatments are unsatisfactory. Newer pharmacological treatments have shown good results, but are not curative and could have major side effects. At the same time as pharmacological treatments, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality for tissue regeneration and repair. MSCs are multipotential non-hematopoietic progenitor cells capable to differentiating into multiple lineages of the mesenchyme. Bone marrow MSCs can differentiate into osteogenic cells and display immunological properties and secrete paracrine anti-inflammatory factors in damaged tissues. The immunomodulatory, reparative, and anti-inflammatory properties of bone marrow MSCs have been tested in a variety of animal models of MRONJ and applied in specific clinical settings. The aim of this review is to discuss critically the immunogenicity and immunomodulatory properties of MSCs, both in vitro and in vivo, the possible underlying mechanisms of their effects, and their potential clinical use as modulators of immune responses in MRONJ, and to identify clinical safety and recommendations for future research.

Inhibition of lyosphosphatidic acid receptor 1 signaling in periodontal ligament stem cells reduces inflammatory paracrine effect in primary astrocyte cells

  • Kim, Dong Hee;Seo, Eun Jin;Kim, Young Hwan;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • 제47권2호
    • /
    • pp.25-31
    • /
    • 2022
  • Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer's disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.

Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease

  • Kang, In Sook;Kwon, Kihwan
    • BMB Reports
    • /
    • 제55권1호
    • /
    • pp.30-38
    • /
    • 2022
  • Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • 제56권9호
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

Involvement of TGF-β1 Signaling in Cardiomyocyte Differentiation from P19CL6 Cells

  • Lim, Joong-Yeon;Kim, Won Ho;Kim, Joon;Park, Sang Ick
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.431-436
    • /
    • 2007
  • Stem cell-based therapy is being considered as an alternative treatment for cardiomyopathy. Hence understanding the basic molecular mechanisms of cardiomyocyte differentiation is important. Besides BMP or Wnt family proteins, $TGF-{\beta}$ family members are thought to play a role in cardiac development and differentiation. Although $TGF-{\beta}$ has been reported to induce cardiac differentiation in embryonic stem cells, the differential role of $TGF-{\beta}$ isoforms has not been elucidated. In this study, employing the DMSO-induced cardiomyocyte differentiation system using P19CL6 mouse embryonic teratocarcinoma stem cells, we investigated the $TGF-{\beta}$-induced signaling pathway in cardiomyocyte differentiation. $TGF-{\beta}1$, but not the other two isoforms of $TGF-{\beta}$, was induced at the mRNA and protein level at an early stage of differentiation, and Smad2 phosphorylation increased in parallel with $TGF-{\beta}1$ induction. Inhibition of $TGF-{\beta}1$ activity with $TGF-{\beta}1$-specific neutralizing antibody reduced cell cycle arrest as well as expression of the CDK inhibitor $p21^{WAF1}$. The antibody also inhibited induction of the cardiac transcription factor Nkx2.5. Taken together, these results suggest that $TGF-{\beta}1$ is involved in cardiomyocyte differentiation by regulating cell cycle progression and cardiac gene expression in an autocrine or paracrine manner.