• Title/Summary/Keyword: Paracrine

Search Result 117, Processing Time 0.024 seconds

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

Prognostic Value of Vascular Endothelial Growth Factor (VEGF) in Resected Non-Small Cell Lung Cancer (비소세포폐암의 예후인자로서 Vascular Endothelial Growth Factor(VEGF)의 의의)

  • Ko, Hyeck-Jae;Park, Jeong-Hyun;Shim, Hyeok;Yang, Sei-Hoon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.6
    • /
    • pp.676-685
    • /
    • 2001
  • Background : Angiogenesis is an essential component of tumor growth and metastasis, and the vascular endothelial growth factor (VEGF) is one of the most important angiogenic factors. Several solid tumors produce substantial amounts of VEGF, which stimulates proliferation and the migration of endothelial cells, thereby inducing neovasculization by a paracrine mechanism. To evaluate the prognostic roles of angiogenesis and VEGF expression in patients with non-small cell lung cancer, the relationship between VEGF expression in tumor tissues, the clinicopathologic features and the overall survival rate were analysed. Methods : Sixty-nine resected primary non-small cell lung cancer specimens were evaluated. The paraffin-embedded tumor tissues were stained by anti-VEGF polyclonal antibodies using an immunohistochemical method to assess VEGF expression. Results : In Forty-one patients (59%), the VEGF antigen was expressed weakly in their tumor tissue, whereas in twenty-eight patients (41%) the VEGF antigen was expressed strongly. The median survival time of the weak VEGF expression group was 24 months, and that of the strong VEGF expression group was 19 months. The three year-survival rates were 35%, 33%, respectively. The survival difference between both groups was not statistically significant. Conclusion : Although results were not statistically significant, the strong expression group tended to poorer prognosis than the weak expression group.

  • PDF

Effects of FGF on Embryonic Development In Vitro in Hanwoo COCs (한우 난구 복합체의 체외발생에 있어서 FGF(Fibroblast Growth Factor)가 미치는 영향)

  • Choi S.H.;Cho S.R.;Kim H.J.;Choe C.Y.;Han M.H.;Son D.S.;Chung Y.G.;H. Hoshi
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.157-162
    • /
    • 2006
  • It is well known that unidentified factors in sera, hormones and growth factors promote the proliferation of granulosa cells and nuclear maturation of bovine COCs (cumulus oocytes complexes) in vitro. Attempts had been developed the simple composition of culture media and similar system to in vivo conditions has been applied. In the present study, we investigated the effect of FGF (fibroblast growth factor) on in vitro maturation and in vitro development of Hanwoo COCs. When the COCs were matured in HPM 199 (Inst. of Functional peptide, Japan) containing 0.1, 1 and 10 ng/ml FGF for 24 hr, maturation rates to metaphase II ($70.0{\sim}75.0%$) were significantly higher (p<0.05) than that of control group (0 ng/ml FGF, 37.5%). When matured COCs with FGF were cultured in maturation medium after in vitro fertilization, developmental rates to blastocysts were 9.5, 0 and 2.9%, respectively, compared to 25.0% of the control group (p<0.05). When the matured COCs with FGF were cultured in HPM 199 (IFP971, Inst. of Functional peptide, Japan) containing 10% FBS, 0.8% BSA or 0.1% PVA (polyvinyl alcohol), the blastocyst formation rates were 12.4, 12.8 and 8.5%, respectively, while the rates of matured COCs with FGF and cultured with IVMD and IVD (Inst. of Functional peptide, Japan) without serum were 38.4% and 34.8%, respectively (p<0.05). These results suggested that FGF is available for in vitro maturation of bovine COCs and is not suitable for in vitro development, but further investigation would be need for finding the synergistic autocrine/paracrine fashion of other growth factors in early bovine embryo development.

Expression of Transforming Growth Factor-$\alpha$ and Transforming Growth Factor-$\beta$ In Human Primary Lung Cancers (인체 폐암종의 TGF-$\alpha$ 및 TGF-$\beta$의 발현에 관한 면역 조직화학적 연구)

  • Lew, Woo-Jin;Shin, Dong-Ho;Park, Sung-Soo;Lee, Dong-Hoo;Lee, Jung-Dal;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.492-501
    • /
    • 1995
  • Background: Transforming growth factor- alpha(TGF-$\alpha$) may play important roles in carcinogenesis, tumor growth, and angiogenesis. Transforming growth factor-beta(TGF-$\beta$) are known to be involved in cell-cycle control and regeneration. TGF-$\alpha$ positively acts on growth control of many epithelial cells in contrast to the negative role of TGF-$\beta$. Method: To evaluate the possible role of TGF-$\alpha$ and TGF-$\beta$ in human primary lung cancers, the expression of TGF-$\alpha$ and TGF-$\beta$ were immmunohistochemically investigated in tissue sections from forty seven cases with lung cancers and ten cases with non-cancerous lung tissues. Recombinant cloned monoclonal antibody of TGF-$\alpha$ and neutralizing antibody of TGF-$\beta$ were employed as primary antibodies after dewaxing the formalin-fixed, paraffinized tissue sections. Results: TGF-$\alpha$ was expressed in the cytoplasms of tumor cells in thirty five cases of forty seven(74.5%) primary lung cancers, whereas the control expressed in two of ten brochial epithelial cells. The expression of TGF-$\alpha$ was disclosed in four cases of eleven(36.4 %) small cell carcinomas and thirty one cases of thirty six(86.1%) non-small cell carcinomas of the lung. Expressions of TGF-$\beta$ was discernible in bronchial epithelium in eight of ten non-cancerous lung tissues. The expression of TGF-$\beta$ was noted in the cytoplasms of tumor cells in eight cases of forty seven(17.0%) primary lung cancers. The expression of TGF-$\beta$ disclosed in two cases of eleven(18.2%) small cell carcinomas and six cases of thirty six(16.7%) non- small cell carcinomas of the lung. Conclusion: These findings suggest that up-regulation of TGF-$\alpha$ and down-regulation of TGF-$\beta$ are involved during development and growth of primary lung cancers.

  • PDF

Effect of TGF-${\beta}$ Supplementation on In Vitro Maturation of Hanwoo COCs (Cumulus Oocytes Complexes) (TGF- ${\beta}$ 첨가가 한우 난포란의 체외성숙에 미치는 영향)

  • Choi, Sun-Ho;Lee, Hye-Hyun;Yeon, Seong-Heum;Han, Man-Hye;Kim, Hyun-Jong;Cho, Sang-Rae;Woo, Jae-Seok;Baek, Kwang-Soo;Ryu, Il-Sun;Son, Dong-Soo
    • Development and Reproduction
    • /
    • v.8 no.2
    • /
    • pp.119-122
    • /
    • 2004
  • It is well known that unidentified factors in sera, hormones and growth factors promote the proliferation of granulosa cells and nuclear maturation of bovine COCs in vitro. Attemps had been developed the simple composition of culture media and similar system to in vivo conditions has been applied. In the present study, we investigated the effect of TGF-${\beta}$ on in vitro maturation and in vitro development of Hanwoo COCs. When the COCs were matured in TCM 199 containing 0.1, 1 or 10 ng/ml TGF-${\beta}$ for 24 hrs, metaphaseⅡ of COCs were obtained 95.8%, 100% of matured COCs, respectively and there were no differences among the concentrations of TGF-${\beta}$. Matured COCs with TGF-${\beta}$ cultured in maturation medium after in vitro fertilization, developmental rate to blastocyst were 0~0.8%. Matured COCs with TGF-${\beta}$ were cultured in TCM 199+10% FBS, 0.8% BSA, 0.1% PVA, blastocyst formation were showed in 12.4%, 12.8%, 8.5% of those and cultured in IVMD or IVD without serum were 38.4%, 34.8%, respectively. There were significant differences among the media (P<0.05). TGF-${\beta}$ is available for i vitro maturation of bovine COCs, but further investigation would be need for finding the synergistic autocrine/paracrine fashion of other growth factors in early bovine development.

  • PDF

The Role of the Endometrium and Embryo in Human Implantation (인간 착상 과정에 자궁내막과 배아의 역할)

  • Jee, Byung-Chul
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Implantation itself is governed by an array of endocrine, paracrine and autocrine modulators, of embryonic and maternal origin. Window of implantation is the unique temporal and spatial expression of factors allows the embryo to implant via signaling, appositioning, attachment, and invasion in a specific time frame of $2{\sim}4$ days. When the embryo has arrived in the uterine cavity, a preprogrammed sequence of events occurs, which involves the production and secretion of a multitude of biochemical factors such as cytokines, growth factors, and adhesion molecules by the endometrium and the embryo, thus leading to the formation of a receptive endometrium. Cytokines such as LIF, CSF-1, and IL-1 have all been shown to play important roles in the cascade of events that leads to implantation. Integrin, L-selectin ligands, glycodelin, mucin-1, HB-EGF and pinopodes are involved in appositioning and attachment. The embryo also produces cytokines and growth factors (ILs, VEGF) and receptors for endometrial signals such as LIF, CSF-1, IGF and HB-EGF. The immune system and angiogenesis play an important role. The usefulness of these factors to assess endometrial receptivity and to estimate the prognosis for pregnancy in natural and artificial cycles remains to be proven. Integrins, pinopodes, glycodelin and LIF (from biopsies) are promising candidates; from uterine flushings, glycodelin and LIF are also candidates. The ideal serum marker is not available, but VEGF, glycodelin and CSF have some clinical implications. Further evaluation that includes larger groups of infertile women and fertile controls are needed to elucidate whether their presence in plasma, flushing fluid, or endometrial samples can be used as some kind of a screening tool to assess endometrial function and prognosis for pregnancy before and after artificial reproductive therapy. A better understanding of their function in human implantation may lead to therapeutic intervention, thereby improving the success rate in reproduction treatment. New molecular techniques are becoming available for measuring both embryonic and endometrial changes prior to and during implantation. The use of predictive sets of markers may prove to be more reliable than a single marker. Ultimately, the aim is to use these tools to increase implantation in artificial cycles and consequently improve live-birth rates.

  • PDF