• Title/Summary/Keyword: Paracontact metric manifolds

Search Result 5, Processing Time 0.015 seconds

CONFORMAL RICCI SOLITON ON PARACONTACT METRIC (k, 𝜇)-MANIFOLDS WITH SCHOUTEN-VAN KAMPEN CONNECTION

  • Pardip Mandal;Mohammad Hasan Shahid;Sarvesh Kumar Yadav
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.161-173
    • /
    • 2024
  • The main object of the present paper is to study conformal Ricci soliton on paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection. Further, we obtain the result when paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection satisfying the condition $^*_C({\xi},U){\cdot}^*_S=0$. Finally we characterized concircular curvature tensor on paracontact metric (k, 𝜇)-manifolds with respect to Schouten-van Kampen connection.

The Geometry of 𝛿-Ricci-Yamabe Almost Solitons on Paracontact Metric Manifolds

  • Somnath Mondal;Santu Dey;Young Jin Suh;Arindam Bhattacharyya
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.623-638
    • /
    • 2023
  • In this article we study a 𝛿-Ricci-Yamabe almost soliton within the framework of paracontact metric manifolds. In particular we study 𝛿-Ricci-Yamabe almost soliton and gradient 𝛿-Ricci-Yamabe almost soliton on K-paracontact and para-Sasakian manifolds. We prove that if a K-paracontact metric g represents a 𝛿-Ricci-Yamabe almost soliton with the non-zero potential vector field V parallel to 𝜉, then g is Einstein with Einstein constant -2n. We also show that there are no para-Sasakian manifolds that admit a gradient 𝛿-Ricci-Yamabe almost soliton. We demonstrate a 𝛿-Ricci-Yamabe almost soliton on a (𝜅, 𝜇)-paracontact manifold.

SOME CLASSES OF 3-DIMENSIONAL NORMAL ALMOST PARACONTACT METRIC MANIFOLDS

  • ERKEN, I. KUPELI
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.457-468
    • /
    • 2015
  • The aim of present paper is to investigate 3-dimensional ${\xi}$-projectively flt and $\tilde{\varphi}$-projectively flt normal almost paracontact metric manifolds. As a first step, we proved that if the 3-dimensional normal almost paracontact metric manifold is ${\xi}$-projectively flt then ${\Delta}{\beta}=0$. If additionally ${\beta}$ is constant then the manifold is ${\beta}$-para-Sasakian. Later, we proved that a 3-dimensional normal almost paracontact metric manifold is $\tilde{\varphi}$-projectively flt if and only if it is an Einstein manifold for ${\alpha},{\beta}=const$. Finally, we constructed an example to illustrate the results obtained in previous sections.

CHARACTERIZATIONS FOR TOTALLY GEODESIC SUBMANIFOLDS OF (𝜅, 𝜇)-PARACONTACT METRIC MANIFOLDS

  • Atceken, Mehmet;Uygun, Pakize
    • Korean Journal of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.555-571
    • /
    • 2020
  • The aim of the present paper is to study pseudoparallel invariant submanifold of a (𝜅, 𝜇)-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a (𝜅, 𝜇)-paracontact metric manifold and we obtain new results contribute to geometry.

CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF PARA-KENMOTSU MANIFOLDS

  • Atceken, Mehmet
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • The purpose of this paper is to study invariant pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparallel submanifold of a para-Kenmotsu manifold and I obtained some equivalent conditions of invariant submanifolds of para-Kenmotsu manifolds under some conditions which the submanifolds are totally geodesic. Finally, a non-trivial example of invariant submanifold of paracontact metric manifold is constructed in order to illustrate our results.