• Title/Summary/Keyword: Panelization

Search Result 9, Processing Time 0.024 seconds

A Study on the Problem Analysis and Quality Improvement in Fabricating Free-Form Buildings Facade Panels through Mock-up Panels Production (Mock-up 부재제작을 통한 비정형 건축 외장부재의 제작 문제점 분석 및 개선방안에 관한 연구)

  • Kwen, Soon-Ho;Shim, Hyoun-Woo;Ock, Jong-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.11-21
    • /
    • 2011
  • The most critical issue in free-form buildings is how to construct the free-formed exterior facade panels. Their geometric complexity delivers many cons and problems in fabricating and constructing their shapes. To construct a free-form building, first of all, its skin has to be chopped into small pieces, which is called panelization. After panelization, the panels go through an optimization process to construct them economically. The panel's geometries are modified or regenerated through this optimization process. In this study, the panel optimization process of free-form buildings are performed through a case study. The panel shapes of the case study are modeled with Digital Project. To test the constructability of the various panels, 8 mock-up panels are made and laser scanning technology is applied to measure the preciseness of the panels manufactured in comparison with their original design.

The Ultra-Modern FKI Tower

  • Peronto, John
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.4
    • /
    • pp.315-322
    • /
    • 2017
  • A modern and highly-sustainable addition to the skyline of Seoul, South Korea has been completed; the Federation of Korean Industries Headquarters (FKI). The signature saw-toothed exterior wall of the 245-meter tall tower and the contrasting smooth nature of the pipe-shell structured podium "egg" gives this project and site a unique identity in the city.

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Knowledge Support and Automation of Paneled Building Envelopes for Complex Buildings using Script Programming

  • Park, Jungdae;Im, Jinkyu
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.85-90
    • /
    • 2015
  • Advances in the technology of computational design are giving architects and engineers the opportunity to analyze buildings with complex geometries. This study explores the optimization and automation process using the parametric design method, and uses digital tools to achieve surface representation and panelization for curved shaped office buildings. In this paper, we propose parametric algorithms of dimensional and geometric constraints using the Knowledge-ware scripts embedded in Gehry Technologies' Digital Project. The knowledge-based design methods proposed in this study can be used to systemize the knowledge possessed by experts in the form of data. Such knowledge is required to promote collaboration between designers and engineers in the process of CAD/CAE/CAM. The aim of this study is to integrate the process into design, which establishes an integrated process. This integration enables two-way feedback between design and construction data by combining the methods used in designing, engineering, and construction.

A Fundamental Study on the Comparison of As-Planned with As-Built of Free-form Building Skins Using Laser Scanning Technology (Laser Scanning 기술을 이용한 비정형 건축외피의 As-Planned와 As-Built 비교에 관한 기초적 연구)

  • Kwen, Soon-Ho;Shim, Hyoun-Woo;Jang, Hyoun-Seung;Ock, Jong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.126-136
    • /
    • 2011
  • The existing approaches to freeform building construction cause many problems. However, recent BIM technique development based on parametric modeling method and improvement of freeform materials manufacturing technology using IT technology encouraged many advanced countries to try experimental projects. Thus, laser scanning technique is in the limelight as a new alternative in the field of freeform building construction and inspection. This study selected a domestic small freeform building and practiced laser scanning and as-planned modeling by using Reverse Engineering. Then each deviation was comparatively analyzed through figures which extracted data by numerically analyzing the newly modeled as-built and Excel spread sheet. Through the process, limits and follow-up research subjects are discussed as well.

A Study on the Cost Estimates for Optimization in the Free-Form Building Facade (비정형 건축물 파사드의 개산견적을 위한 최적화에 관한 연구)

  • Lim, Jang-Sik;Ock, Jong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.133-135
    • /
    • 2013
  • The most difficult process in the construction of free-form buildings is to manufacture and construct exterior panels designed in a complex way. The façade of the free-form buildings include flat-panels, one-way curvature-panels, and bi-directional curvature panels. To construct these forms, it is necessary to go through the process of optimizing. But as for the optimizing technologies, BIM-specializing companies exclusively protect those technologies, so small construction companies have difficulty in rough estimates. Therefore, this study was aimed to provide the basic data in making the rough estimates of free-form buildings by carrying out the optimizing process for the façade of Dongdaemun Design Plaza and conducting the rough estimates according to the stage of production methods and optimization.

  • PDF

A Study on Evaluation Index of the Panelizing Optimization for Architectural Freeform Surfaces (비정형 건축곡면 패널분할 최적화를 위한 평가지표에 관한 연구)

  • Ryu, Jeong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3528-3537
    • /
    • 2013
  • Evaluation indices of the panelizing optimization for Architectural freeform surfaces are proposed for quantitative evaluation through the case studies on panelizing optimization and evaluation index for Architectural freeform surfaces. Proposed evaluation items are adherence to original design intent, production ease, and continuity. The evaluation index for adherence to original design intent is surfaces fitness, the evaluation indices for production ease are planarity, planar panel ratio, and the evaluation indices for continuity are tangent continuity, and divergence. Algorithms are also suggested to compute the proposed evaluation indices.

Decision Factors on Free-form Concrete Panel Sizes Produced by CNC Machines (CNC machine에 의해 생산 가능한 FCP 크기의 결정요인)

  • Lim, Jeeyoung;Lee, Donghoon;Moon, Yu-Mi;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.204-205
    • /
    • 2015
  • Demands for free-form buildings are on the rise, but such building designs require most cost and longer construction schedule, with less constructability due to challenges in construction member production and installation. FCP production technology has been developed using CNC machine in a bid to resolve the difficulties of member production. Exterior finishing panels of free-form building design must be divided in size and shape that can be produced by CNC machine. To solve this problem, constraints of CNC machine and correlations between CNC machine and panel need to be reviewed. Thus, the purpose of this study is to analyze decision factors on free-form concrete panel sizes produced by CNC machines. Through this study, FCP size can be optimized, which in turn can lead to improved FCP productivity and aesthetical quality of free-form building designs determined by the pattern of exterior finishing panels. CNC machine-enabled free-form concrete panel production technology will apply on site in the future, which will not only maximize the economic benefits of the technology but also support shorter construction schedule and better constructability.

  • PDF

A Study on the Optimization of the Free-Form Buildings Façade Panels (비정형 건축물 외장패널의 최적화에 관한 연구)

  • Lim, Jang-Sik;Ock, Jong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.91-102
    • /
    • 2014
  • The outer surface of an irregular structure contains panels with two-directional curvature called NURBS. To construct these forms of exterior materials, complex geometric surface should be divided into forms and sizes that can be manufactured and constructed. Because the bigger the curvatures of these divided exterior panel, the more expensive the construction costs, these complex two-directional curvatures should go through optimal process of reinterpretation to minimize the curved surfaces with complex two-directional curvatures. Yet, to gain higher ground in technological competition in the field of irregular structure construction, companies do not share know-how that they obtained. Accordingly, small construction and design companies have trouble calculating even rough estimate and cannot adjust expected construction cost based on comparison of design alternatives. Given this situation, this study conducted the research that can support decision-making in the design stage of the construction and provide basic material for optimal range to reduce manufacturing cost by the minimizing the distorted plane of the irregular structure.