• Title/Summary/Keyword: Panchromatic Image

Search Result 155, Processing Time 0.021 seconds

Watershed Segmentation of High-Resolution Remotely Sensed Imagery

  • WANG Ziyu;ZHAO Shuhe;CHEN Xiuwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.107-109
    • /
    • 2004
  • High-resolution remotely sensed data such as SPOT-5 imagery are employed to study the effectiveness of the watershed segmentation algorithm. Existing problems in this approach are identified and appropriate solutions are proposed. As a case study, the panchromatic SPOT-5 image of part of Beijing urban areas has been segmented by using the MATLAB software. In segmentation, the structuring element has been firstly created, then the gaps between objects have been exaggerated and the objects of interest are converted. After that, the intensity valleys have been detected and the watershed segmentation have been conducted. Through this process, the objects in an image are divided into separate objects. Finally, the effectiveness of the watershed segmentation approach for high-resolution imagery has been summarized. The approach to solve the problems such as over-segmentation has been proposed.

  • PDF

Image Registration for Cloudy KOMPSAT-2 Imagery Using Disparity Clustering

  • Kim, Tae-Young;Choi, Myung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • KOMPSAT-2 like other high-resolution satellites has the time and angle difference in the acquisition of the panchromatic (PAN) and multispectral (MS) images because the imaging systems have the offset of the charge coupled device combination in the focal plane. Due to the differences, high altitude and moving objects, such as clouds, have a different position between the PAN and MS images. Therefore, a mis-registration between the PAN and MS images occurs when a registration algorithm extracted matching points from these cloud objects. To overcome this problem, we proposed a new registration method. The main idea is to discard the matching points extracted from cloud boundaries by using an automatic thresholding technique and a classification technique on a distance disparity map of the matching points. The experimental result demonstrates the accuracy of the proposed method at ground region around cloud objects is higher than a general method which does not consider cloud objects. To evaluate the proposed method, we use KOMPSAT-2 cloudy images.

Change Detection of Land-cover from Multi-temporal KOMPSAT-1 EOC Imageries

  • Ha, Sung-Ryong;Ahn, Byung-Woon;Park, Sang-Young
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • A radiometric correction method is developed to apply multi-temporal KOMPSAT-1 EOC satellite images for the detection of land-cover changes b\ulcorner recognizing changes in reflection pattern. Radiometric correction was carried out to eliminate the atmospheric effects that could interfere with the image properly of the satellite data acquired at different multi-times. Four invariant features of water, sand, paved road, and roofs of building are selected and a linear regression relationship among the control set images is used as a correction scheme. It is found that the utilization of panchromatic multi-temporal imagery requires the radiometric scene standardization process to correct radiometric errors that include atmospheric effects and digital image processing errors. Land-cover with specific change pattern such as paddy field is extracted by seasonal change recognition process.

Radiometric Characteristics of KOMPSAT EOC Data Assessed by Simulating the Sensor Received Radiance

  • Kim, Jeong-Hyun;Lee, Kyu-Sung;Kim, Du-Ra
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.281-289
    • /
    • 2002
  • Although EOC data have been frequently used in several applications since the launch of the KOMPSAT-1 satellite in 1999, its radiometric characteristics are not clear due to the inherent limitations of the on-board calibration system. The radiometric characteristics of remotely sensed imagery can be measured by the sensitivity of radiant flux coming from various surface features on the earth. The objective of this study is to analyze the radiometric characteristics of EOC data by simulating the sensor- received radiance. Initially, spectral reflectance values of reference targets were measured on the ground by using a portable spectre-radiometer at the EOC spectrum. A radiative transfer model, LOWTRAN, then simulated the sensor-received radiance values of the same reference target. By correlating the digital number (DN) extracted from the EOC image to the corresponding radiance values simulated from LOWTRAN, we could find the radiometric calibration coefficients for EOC image. The radiometric gain coefficients of EOC are very similar to those of other panchromatic optical sensors.

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

A Comparative Analysis of IHS, FIHS, PCA, BT and WT Image Fusion Methods Using IKONOS Image Data (IKONOS 영상을 활용한 IHS, FIHS, PCA, BT, WT 영상 융합법의 비교분석)

  • Kim, Hyun;Yu, Jae Ho;Kim, Joong Gon;Seo, Yong Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.599-602
    • /
    • 2009
  • This paper presents a comparative analysis of five different fusion methods. The five different methods to merge multispectral images and panchromatic image are IHS, FIHS, PCA, BT and WT methods. The comparative analysis based on visual analysis and quantitative analysis are performed using the merged results. From the results the FIHS method provide good result, BT, PCA, IHS and WT method show the next order.

  • PDF

Evaluation of Quality Improvement Achieved by Deterministic Image Restoration methods on the Pan-Sharpening of High Resolution Satellite Image (결정론적 영상복원과정을 이용한 고해상도 위성영상 융합 품질 개선정도 평가)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • High resolution Pan-sharpening technique is becoming increasingly important in the field of remote sensing image analysis as an essential image processing to improve the spatial resolution of original multispectral image. The general scheme of pan-sharpening technique consists of upsampling process of multispectral image and high-pass detail injection process using the panchromatic image. The upsampling process, however, brings about image blurring, and this lead to spectral distortion in the pan-sharpening process. In order to solve this problem, this paper presents a new method that adopts image restoration techniques based on optimization theory in the pan-sharpening process, and evaluates its efficiency and application possibility. In order to evaluate the effect of image restoration techniques on the pansharpening process, the result obtained using the existing method that used bicubic interpolation were compared visually and quantitatively with the results obtained using image restoration techniques. The quantitative comparison was done using some spectral distortion measures for use to evaluate the quality of pan-sharpened image.

Semi-Automated Extraction of Geographic Information using KOMPSAT 2 : Analyzing Image Fusion Methods and Geographic Objected-Based Image Analysis (다목적 실용위성 2호 고해상도 영상을 이용한 지리 정보 추출 기법 - 영상융합과 지리객체 기반 분석을 중심으로 -)

  • Yang, Byung-Yun;Hwang, Chul-Sue
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.282-296
    • /
    • 2012
  • This study compared effects of spatial resolution ratio in image fusion by Korea Multi-Purpose SATellite 2 (KOMPSAT II), also known as Arirang-2. Image fusion techniques, also called pansharpening, are required to obtain color imagery with high spatial resolution imagery using panchromatic and multi-spectral images. The higher quality satellite images generated by an image fusion technique enable interpreters to produce better application results. Thus, image fusions categorized in 3 domains were applied to find out significantly improved fused images using KOMPSAT 2. In addition, all fused images were evaluated to satisfy both spectral and spatial quality to investigate an optimum fused image. Additionally, this research compared Pixel-Based Image Analysis (PBIA) with the GEOgraphic Object-Based Image Analysis (GEOBIA) to make better classification results. Specifically, a roof top of building was extracted by both image analysis approaches and was finally evaluated to obtain the best accurate result. This research, therefore, provides the effective use for very high resolution satellite imagery with image interpreter to be used for many applications such as coastal area, urban and regional planning.

  • PDF

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

Analysis of Image Integration Methods for Applying of Multiresolution Satellite Images (다중 위성영상 활용을 위한 영상 통합 기법 분석)

  • Lee Jee Kee;Han Dong Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.359-365
    • /
    • 2004
  • Data integration techniques are becoming increasing1y important for conquering a limitation with a single data. Image fusion which improves the spatial and spectral resolution from a set of images with difffrent spatial and spectral resolutions, and image registration which matches two images so that corresponding coordinate points in the two images correspond to the same physical region of the scene being imaged have been researched. In this paper, we compared with six image fusion methods(Brovey, IHS, PCA, HPF, CN, and MWD) with panchromatic and multispectral images of IKONOS and developed the registration method for applying to SPOT-5 satellite image and RADARSAT SAR satellite image. As the result of tests on image fusion and image registration, we could find that MWD and HPF methods showed the good result in term of visual comparison analysis and statistical analysis. And we could extract patches which depict detailed topographic information from SPOT-5 and RADARSAT and obtain encouraging results in image registration.