• 제목/요약/키워드: Paenibacillus sp. A11

검색결과 16건 처리시간 0.108초

Expression of Cyclodextrinase Gene from Paenibacillus sp. A11 in Escherichia coli and Characterization of the Purified Cyclodextrinase

  • Kaulpiboon, Jarunee;Pongsawasdi, Piamsook
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.408-415
    • /
    • 2004
  • The expression of the Paenibacillus sp. A11 cyclodextrinase (CDase) gene using the pUC 18 vector in Escherichia coli JM 109 resulted in the formation of an insoluble CDase protein in the cell debris in addition to a soluble CDase protein in the cytoplasm. Unlike the expression in Paenibacillus sp. A11, CDase was primarily observed in cytoplasm. However, by adding 0.5 M sorbitol as an osmolyte, the formation of insoluble CDase was prevented while a three-fold increase in cytoplasmic CDase activity was achieved after a 24 h-induction. The recombinant CDase protein was purified to approximately 14-fold with a 31% recovery to a specific activity of 141 units/mg protein by 40-60% ammonium sulfate precipitation, DEAE-Toyopearl 650 M, and Phenyl Sepharose CL-4B chromatography. It was homogeneous by non-denaturing and SDS-PAGE. The enzyme was a single polypeptide with a molecular weight of 80 kDa, as determined by gel filtration and SDS-PAGE. It showed the highest activity at pH 7.0 and $40^{\circ}C$. The catalytic efficiency ($k_{cat}/K_m$) values for $\alpha$-, $\beta$-, and $\gamma$-CD were $3.0{\times}10^5$, $8.8{\times}10^5$, and $5.5{\times}10^5\;M^{-1}\;min^{-1}$, respectively. The enzyme hydrolyzed CDs and linear maltooligosaccharides to yield maltose and glucose with less amounts of maltotriose and maltotetraose. The rates of hydrolysis for polysaccharides, soluble starch, and pullulan were very low. The cloned CDase was strongly inactivated by N-bromosuccinimide and diethylpyrocarbonate, but activated by dithiothreitol. A comparison of the biochemical properties of the CDases from Paenibacillus sp. A11 and E. coli transformant (pJK 555) indicates that they were almost identical.

제주연안으로부터 분리한 Paenibacillus sp. MK-11의 어류 질병 세균에 대한 항균활성 탐색 (The Antibacterial Activity Against Fish Pathogen of Paenibacillus sp. MK-11 Isolated from Jeju Coast)

  • 김민선;박소현;김동휘;허문수
    • 생명과학회지
    • /
    • 제24권8호
    • /
    • pp.880-886
    • /
    • 2014
  • 제주 연안에서 분리한 해양유래미생물 14종을 이용하여 어류질병세균 4종에 대해 항균활성을 탐색하였다. 그 결과, MK-11이 그람양성균인 Streptococcus iniae, Streptococcus parauberis에 대하여 항균활성을 나타내었다. 특히 S. iniae에 대해 뛰어난 활성을 보였으며 최소 억제 농도는 $250{\mu}g/ml$로 나타났다. 최적 생장 조건은 $25^{\circ}C$, pH 6.0, 1% NaCl로 나타났으며, 최적 배지 조건은 탄소원 sorbitol, 질소원 yeast extract, 무기염 dipotassium phosphate ($K_2HPO_4$)으로 나타났다. API 50CHB kit 결과, D-sorbitol 과 D-mannitol을 추가적으로 분해하여 산을 생성하였다. 16S rDNA 염기서열 분석결과, MK-11은 Paenibacillus polymyxa, P. jamilae, P. rasilensis 와 각각 99.78%, 99.43%, 99.39%의 유사도를 나타내었다. 이처럼 다양한 특성을 지닌 Paenibacillus sp. MK-11은 그람양성균에 대한 새로운 항생물질로서의 이용가능성을 보였으며, 추가 연구를 통해 in vivo에 적용 가능할 것으로 사료된다.

Investigation of the Properties of Sand Tubules, a Biomineralization Product, and their Microbial Community

  • Hu, Weilian;Dai, Dehui
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.364-372
    • /
    • 2016
  • Sand tubules, made up of sand grains cemented by microbe-induced calcium carbonate precipitation, have been found in China's Ningxia Province. Sand tubules grow like a tree's roots about 40-60 cm below the surface. The properties of sand tubules and their bacterial community were examined. X-Ray diffraction analysis revealed that the sand tubules were associated with crystalline calcite. Scanning electron microscopy showed that the crystalline solid had a lamellar structure and lacked the presence of cells, suggesting that no bacteria acted as nucleation sites, nor that the crystalline solid was formed by the aggregation of bacteria. Denaturing gradient gel electrophoresis analysis showed 11 of the 12 detectable bands were uncultured bacteria by BLAST analysis in the GenBank database, and the rest were closely related to Paenibacillus sp. (100% identity). By cultivation techniques, the only strain isolated from the sand tubule was suggested to be related to Paenibacillus sp.; no archaea were found. Furthermore, Paenibacillus sp. was demonstrated to induce calcium carbonate precipitation in vitro.

Cloning and Sequencing of the ${\beta}-Amylase$ Gene from Paenibacillus sp. and Its Expression in Saccharomyces cerevisiae

  • Jeong, Tae-Hee;Kim, Hee-Ok;Park, Jeong-Nam;Lee, Hye-Jin;Shin, Dong-Jun;Lee, Hwang-Hee Blaise;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.65-71
    • /
    • 2001
  • A gene from Paenibacillus sp. KCTC 8848P encoding ${\beta}-amylase$ was cloned and expressed in Escherichia coli. The Paenibacillus ${\beta}-amylase$ gene cosisted of a 2,409-bp open reading frame without a translational stop codon, encoding a protein of 803 amino acids. The presumed ribosime-binding site, GGAGG, was located 10 bp upstream from the TTG initiation codon. The deduced amino acid sequence of the ${\beta}-amylase$ gene had a 95% similarity to the ${\beta}-amylase$ of Bacillus firmus. The ${\beta}-amylase$ gene was introduced into wild-type strains of Saccharomyces cerevisiae using a linearized yeast integrating vector containing a geneticin resistance gene and its product was secreted into the culture medium.

  • PDF

용인 함박산 토양에서 분리한 Paenibacillus sp. HX-1의 동정과 endo-${\beta}$-1,4-xylanase 생산 증가를 위한 배지최적화 (Enhanced Production of Endo-${\beta}$-1,4-xylanase from Paenibacillus sp. HX-1 Newly Isolated from Soil Samples at Hambak Mountain in Yongin city, Korea)

  • 지원재;김종희;홍순광
    • 한국미생물·생명공학회지
    • /
    • 제41권3호
    • /
    • pp.263-271
    • /
    • 2013
  • 균주 HX-1은 토양샘플로부터 분리된 자일라네이즈 생산 미생물로서 16S rRNA 유전자 염기서열 분석과 이를 이용한 phylogenetic tree 제작을 통하여 Paenibacillus 속의 한 종으로 동정되었다. 그러나 HX-1 균주가 계통발생적 연관관계가 높은 기존에 알려진 표준군주들과는 상당히 다른 생리적-생화학적 특성을 나타내는 사실로부터 HX-1이 신아종일 것으로 판단하고, Paenibacillus sp. HX-1으로 명명하였다. 균주 HX-1로부터의 자일라네이즈 생산을 증가시키는 배지조건을 탐색하여 최적화된 TNX 배지(1% bacto tryptone, 0.7% 자일란, 1% NaCl; pH 7.0)에서 약 7.4배에 달하는 자일라네이즈 생산량의 증가가 가능하였다. 균주 HX-1이 분비하는 자일라네이즈는 pH 7.0과 $45^{\circ}C$에서 최적의 효소활성을 나타냈으며, beechwood 자일란을 기질로 하는 효소반응으로부터 xylobiose를 최종산물로 생산하는 endo-${\beta}$-1,4-xylanase임을 확인하였다. 본 연구로부터 동정된 Paenibacillus sp. HX-1은 다양한 산업에 응용이 가능한 새로운 자일라네이즈를 제공할 수 있는 중요한 균으로 사료된다.

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2007
  • The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Purification and Characterization of Two Thermostable Xylanases from Paenibacillus sp. DG-22

  • Lee, Yong-Eok;Lim, Pyung-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.1014-1021
    • /
    • 2004
  • Two thermostable xylanases, designated XynA and XynB, were purified to homogeneity from the culture supernatant of Paenibacillus sp. DG-22 by ion-exchange and gel-filtration chromatography. The molecular masses of xylanases A and B were 20 and 30 kDa, respectively, as determined by SDS-PAGE, and their isoelectric points were 9.1 and 8.9, respectively. Both enzymes had similar pH and temperature optima (pH 5.0-6.5 and $70^{\circ}C$), but their stability at various temperatures differed. Xylanase B was comparatively more stable than xylanase A at higher temperatures. Xylanases A and B differed in their $K_m$ and $V_{max}$ values. XynA had a $K_m$ of 2.0 mg/ml and a $V_{max}$ of 2,553 U/mg, whereas XynB had a K_m$ of 1.2 mg/ml and a $V_{max}$, of 754 U/mg. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on birchwood xylan, but showed different modes of action. Xylotriose was the major product of XynA activity, whereas XynB produced mainly xylobiose. These enzymes utilized small oligosaccharides such as xylotriose and xylotetraose as substrates, but did not hydrolyzed xylobiose. The amino terminal sequences of XynA and XynB were determined. Xylanase A showed high similarity with low molecular mass xylanases of family 11.

Cloning of a Paenibacillus sp. Endo-${\circ}$-1,4-Glucanase Gene and Its Coexpression with the Endomyces fibuliger ${\circ}$-Glucosidase Gene in Saccharomyces cerevisiae

  • KIM, HYUNJIN;JI-YOUNG YANG;HYEON-GYU LEE;JAEHO, CHA
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.685-692
    • /
    • 2001
  • A gene, Egl, from Paenibacillus sp. KCTC 8848P encoding endo-${\circ}$-1,4-glucanase was cloned and expressed in Escherichia coli. It consisted of an open reading frame of 1,191 bp for a protein that consisted of 397 amino acids with a molecular weight of 44,539 Da. The deduced amino acid sequence of the endo-${\circ}$-1,4-glucanase gene had a 94% similarity to the endo-$\beta$-1,4-glucanase of Bacillus polymyxa. The Egl gene was also expressed in Saccharomyces cerevisiae secreting Endomyces fibuliger $\beta$-glucosidase (BGL1) under the control of the alcohol dehydrogenase (ADC1) gene promoter, S. cerevisiae transformant producing both endo-${\circ}$-1,4-glucanase and ${\circ}$-glucosidase grew on carboxymethyl cellulose as the sole carbon source.

  • PDF

Cloning and Characterization of a Multidomain GH10 Xylanase from Paenibacillus sp. DG-22

  • Lee, Sun Hwa;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1525-1535
    • /
    • 2014
  • The xynC gene, which encodes high molecular weight xylanase from Paenibacillus sp. DG-22, was cloned and expressed in Escherichia coli, and its nucleotide sequence was determined. The xynC gene comprised a 4,419bp open reading frame encoding 1,472 amino acid residues, including a 27 amino acid signal sequence. Sequence analysis indicated that XynC is a multidomain enzyme composed of two family 4_9 carbohydrate-binding modules (CBMs), a catalytic domain of family 10 glycosyl hydrolases, a family 9 CBM, and three S-layer homologous domains. Recombinant XynC was purified to homogeneity by heat treatment, followed by Avicel affinity chromatography. SDS-PAGE and zymogram analysis of the purified enzyme identified three active truncated xylanase species. Protein sequencing of these truncated proteins showed that all had identical N-terminal sequences. In the protein characterization, recombinant XynC exhibited optimal activity at pH 6.5 and $65^{\circ}C$ and remained stable at neutral to alkaline pH (pH 6.0-10.0). The xylanase activity of recombinant XynC was strongly inhibited by 1 mM $Cu^{2+}$ and $Hg^{2+}$, whereas it was noticeably enhanced by 10 mM dithiothreitol. The enzyme exhibited strong activity towards xylans, including beechwood xylan and arabinoxylan, whereas it showed no cellulase activity. The hydrolyzed product patterns of birchwood xylan and xylooligosaccharides by thin-layer chromatography confirmed XynC as an endoxylanase.

Identification of Essential Histidines in Cyclodextrin Glycosyltransferase Isoform 1 from Paenibacillus sp. A11

  • Kaulpiboon, Jarunee;Pongsawasdi, Piamsook
    • BMB Reports
    • /
    • 제36권4호
    • /
    • pp.409-416
    • /
    • 2003
  • The isoform 1 of cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) from Paenibacillus sp. A11 was purified by a preparative gel electrophoresis. The importance of histidine, tryptophan, tyrosine, and carboxylic amino acids for isoform 1 activity is suggested by the modification of the isoform 1 with various group-specific reagents. Activity loss, when incubated with diethylpyrocarbonate (DEP), a histidine modifying reagent, could be protected by adding 25 mM methyl-$\beta$-cyclodextrin substrate prior to the modification. Inactivation kinetics of isoform 1 with DEP resulted in second-order rate constants ($k_{inactivation}$) of $29.5\;M^{-1}s^{-1}$. The specificity of the DEP-modified reaction for the histidine residue was shown by the correlation between the loss of isoform activity and the increase in the absorbance at 246 nm of N-carbethoxyhistidine. The number of histidines that were modified by DEP in the absence and presence of a protective substrate was estimated from the increase in the absorbance using a specific extinction coefficient of N-carbethoxyhistidine of $3,200\;M^{-1}cm^{-1}$. It was discovered that methyl-$\beta$-CD protected per mole of isoform 1, two histidine residues from the modification by DEP. To localize essential histidines, the native, the DEP-modified, and the protected forms of isoform 1 were digested by trypsin. The resulting peptides were separated by HPLC. The peptides of interest were those with $R_t$ 11.34 and 40.93 min. The molecular masses of the two peptides were 5,732 and 2,540 daltons, respectively. When the data from the peptide analysis were checked with the sequence of CGTase, then His-140 and His-327 were identified as essential histidines in the active site of isoform 1.