DOI QR코드

DOI QR Code

Expression of Cyclodextrinase Gene from Paenibacillus sp. A11 in Escherichia coli and Characterization of the Purified Cyclodextrinase

  • Kaulpiboon, Jarunee (Biological Science Ph.D Program, Faculty of Science, Chulalongkorn University) ;
  • Pongsawasdi, Piamsook (Department of Biochemistry, Faculty of Science, Chulalongkorn University)
  • Published : 2004.07.31

Abstract

The expression of the Paenibacillus sp. A11 cyclodextrinase (CDase) gene using the pUC 18 vector in Escherichia coli JM 109 resulted in the formation of an insoluble CDase protein in the cell debris in addition to a soluble CDase protein in the cytoplasm. Unlike the expression in Paenibacillus sp. A11, CDase was primarily observed in cytoplasm. However, by adding 0.5 M sorbitol as an osmolyte, the formation of insoluble CDase was prevented while a three-fold increase in cytoplasmic CDase activity was achieved after a 24 h-induction. The recombinant CDase protein was purified to approximately 14-fold with a 31% recovery to a specific activity of 141 units/mg protein by 40-60% ammonium sulfate precipitation, DEAE-Toyopearl 650 M, and Phenyl Sepharose CL-4B chromatography. It was homogeneous by non-denaturing and SDS-PAGE. The enzyme was a single polypeptide with a molecular weight of 80 kDa, as determined by gel filtration and SDS-PAGE. It showed the highest activity at pH 7.0 and $40^{\circ}C$. The catalytic efficiency ($k_{cat}/K_m$) values for $\alpha$-, $\beta$-, and $\gamma$-CD were $3.0{\times}10^5$, $8.8{\times}10^5$, and $5.5{\times}10^5\;M^{-1}\;min^{-1}$, respectively. The enzyme hydrolyzed CDs and linear maltooligosaccharides to yield maltose and glucose with less amounts of maltotriose and maltotetraose. The rates of hydrolysis for polysaccharides, soluble starch, and pullulan were very low. The cloned CDase was strongly inactivated by N-bromosuccinimide and diethylpyrocarbonate, but activated by dithiothreitol. A comparison of the biochemical properties of the CDases from Paenibacillus sp. A11 and E. coli transformant (pJK 555) indicates that they were almost identical.

Keywords

References

  1. Bender, H. (1986) Production, characterization and application of cyclodextrins. Adv. Biotech. Proc. 6, 31-71.
  2. Bernfeld, P. (1955) Amylases $\alpha$ and $\beta$. Methods Enzymol. 1, 149-150. https://doi.org/10.1016/0076-6879(55)01021-5
  3. Blackwell, J. R. and Horgan, R. (1991) A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett. 295, 10-12. https://doi.org/10.1016/0014-5793(91)81372-F
  4. Bowden, G. A. and Georgiou, G. (1988) The effect of sugars on $\beta$-lactamase aggregation in Escherichia coli. Biotechnol. Progr. 4, 97-101. https://doi.org/10.1002/btpr.5420040208
  5. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chalmers, J. J., Kim, E. K., Telford, J. N., Wong, E. Y., Tacon, W. C., Shuler, M. L. and Wilson, D. B. (1990) Effects of temperature on Escherichia coli overproducing $\beta$-lactamase or human epidermal growth factor. Appl. Environ. Microbiol. 56, 104-111.
  7. Depinto, J. A. and Campbell, L. L. (1968) Purification and properties of the cyclodextrinase of Bacillus macerans. Biochemistry 7, 121-125. https://doi.org/10.1021/bi00841a016
  8. Donovan, R. S., Robinson, C. W. and Glick, B. R. (1996) Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16, 145-154. https://doi.org/10.1007/BF01569997
  9. Fiedler, G., Pajatsch, M. and Bock, A. (1996) Genetics of a novel starch utilisation pathway in Klebsiella oxytoca. J. Mol. Biol. 256, 279-291. https://doi.org/10.1006/jmbi.1996.0085
  10. Hashimoto, Y., Yamamoto, T., Fujiwara, S., Takagi, M. and Imanaka, T. (2001) Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J. Bacteriol. 183, 5050-5057. https://doi.org/10.1128/JB.183.17.5050-5057.2001
  11. Hanning, G. and Makrides, S. C. (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16, 54-60. https://doi.org/10.1016/S0167-7799(97)01155-4
  12. Kaulpiboon, J. and Pongsawasdi, P. (2003) Identification of essential histidines in cyclodextrin glycosyltransferase isoform 1 from Paenibacillus sp. A11. J. Biochem. Mol. Biol. 36, 409-416. https://doi.org/10.5483/BMBRep.2003.36.4.409
  13. Kim, M. H., Lee, J. K., Kim, H. K., Sohn, C. B. and Oh, T. K. (1999) Overexpression of cyclodextrin glycosyltransferase gene from Brevibacillus brevis in Escherichia coli by control of temperature and mannitol concentration. Biotech. Tech. 13, 765-770. https://doi.org/10.1023/A:1008909105229
  14. Kim, T. J., Shin, J. H., Oh, J. H., Kim, M. J., Lee, S. B., Ryu, S., Kwon, K., Kim, J. W., Choi, E. H., Robyt, J. F. and Park, K. H. (1998) Analysis of the gene encoding cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 and characterisation of enzymatic properties. Arch. Biochem. Biophys. 353, 221-227. https://doi.org/10.1006/abbi.1998.0639
  15. Lee, J. C. and Lee, L. L. Y. (1981) Preferential solvent interaction between proteins and polyethylene glycols. J. Biol. Chem. 256, 625-631.
  16. Lee, K. C. P. and Tao, B. Y. (1994) High-level expression of cyclodextrin glycosyltransferase in E. coli using a T7 promoter expression system. Starch 46, 67-74.
  17. Martins, R. F. and Rajni, H. K. (2002) A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterisation. Enz. Microb. Technol. 30, 116-124. https://doi.org/10.1016/S0141-0229(01)00461-6
  18. Mattsson, P., Pohjalainen, T. and Korpela, T. (1992) Chemical modification of cyclomaltodextrin glucanotransferase from Bacillus circulans var alkalophilus. Biochem. Biophys. Acta. 1122, 33-40. https://doi.org/10.1016/0167-4838(92)90123-U
  19. Oguma, T., Matsuyama, A., Kikuchi, M. and Nakano, E. (1993) Cloning and sequence analysis of the cyclomaltodextrinase gene from Bacillus sphaericus and expression in Escherichia coli cells. Appl. Microbiol. Biotechnol. 53, 197-203.
  20. Ohdan, K., Kuriki, T., Takata, H. and Okada, S. (2000) Cloning of the cyclodextrin glucanotransferase gene from alkalophilic Bacillus sp. A2-5a and analysis of the raw starch-binding domain. Appl. Microbiol. Biotechnol. 53, 430-434. https://doi.org/10.1007/s002530051637
  21. Podkovyrov, S. M. and Zeikus, J. G. (1992) Structure of the gene encoding cyclomaltodextrinase from Clostridium thermohydrosulficum 39E and characterization of the enzyme purified from Escherichia coli. J. Bacteriol. 174, 5400-5405.
  22. Rojtinnakorn, J., Kim, P., Laloknam, S., Tongsima, A., Kamolsiripichaiporn, S., Limpaseni, T. and Pongsawasdi, P. (2001) Immunoaffinity purification and characterization of cyclodextrin glycosyltransferase from Bacillus circulans A11. Science Asia. 27, 105-112. https://doi.org/10.2306/scienceasia1513-1874.2001.27.105
  23. Schmid, G., Huber, O. S. and Eberle, H. J. (1988) Selective complexing agent for the production of $\beta$-cyclodextrin; in Proceedings of the Fourth International Symposium on Cyclodextrins, Huber, O. and Szejtli, J. (eds.), pp. 87-92, Kluwer Academic Publishers, Dortrecht, The Netherlands.
  24. Weber, K. and Osborn, M. (1975) Proteins and SDS: molecular weight determination on polyacrylamide gels and related procedures; in The Proteins, Neurath, H., Hill, R. L. and Border, C. (eds.), pp. 179-233, Academic Press, New York, USA.
  25. Yang, S. J., Wang, Z. and Zhang, S. Z. (1996) Purification and properties of cyclodextrinase from Bacillus stearothermophilus HY-1; in Annuals of The New York Academy of Sciences, Dordick, J. S. and Ressell, A. J. (eds.), pp. 425-429, The New York Academy of Sciences, New York, USA.

Cited by

  1. Characterization of Two γ-Cyclodextrin-specific Enzymes from Bacillus clarkii 7364 vol.57, pp.2, 2010, https://doi.org/10.5458/jag.57.121
  2. Gene cloning and enzymatic characteristics of a novel γ-cyclodextrin-specific cyclodextrinase from alkalophilic Bacillus clarkii 7364 vol.1784, pp.12, 2008, https://doi.org/10.1016/j.bbapap.2008.08.022
  3. Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome vol.2, pp.2, 2007, https://doi.org/10.1002/biot.200600183
  4. Kinetics of immobilized cyclodextrin gluconotransferase produced by Bacillus macerans ATCC 8244 vol.39, pp.3, 2006, https://doi.org/10.1016/j.enzmictec.2005.12.019
  5. Molecular structure of cyclomaltodextrinase derived from amylolytic lactic acid bacterium Enterococcus faecium K-1 and properties of recombinant enzymes expressed in Escherichia coli and Lactobacillus plantarum 2018, https://doi.org/10.1016/j.ijbiomac.2017.09.060
  6. pp.00389056, 2018, https://doi.org/10.1002/star.201800133