• Title/Summary/Keyword: Paddy crop classification

Search Result 19, Processing Time 0.02 seconds

Study on Morphological Characteristics of Rice Soils in Mangeong-Dongjin and Yeongsan Watersheds (영산강(榮山江)과 만경(萬頃)·동율강유역(東律江流域)의 답토양분포(畓土壤分布)에 관(關)하여)

  • Kim, Han-Myoung;Cho, Guk-Hyun;Yoo, Chul-Hyun;Eun, Mu-Young;Rho, Sung-Pyo;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 1984
  • To obtain the basic date for the improvement of cultural and managemental problems caused by soil characteristics and soil productivity in rice cultivation of Honam area, morphological characteristics of rice soils were investigated in Mangeng-Dongjin and Yeongsan Water-sheds, and compaired differences between two major Watersheds. The results obtained are summarized as follows: 1. According to U.S.D.A. Soil Taxonomy Classification System, eight great groups are distributed in rice soils of two major Watersheds. More than 50% of rice paddy soils are classified as Haplaquepts. 2. Two Watersheds are quite different in soil parent materials. In Mangeong-Dongjin Watershed, most soils (55.1%) are derived from fluvic-marine deposits. Remainders are derived from local alluvium (24.7%) and alluvium (14.2%). But in Yeongsan Watershed, the order is local alluvium>alluvium>fluvio-marine deposits. 3. Rice soils occur mostly in coastal and inland flat-site with the slope of less than 2% (57.8%) in Mangeong-Dongjin Watersheds. However, in Yeongsan Watershed, flat-site and low undulating terrace are mostly distributed (52.9%). 4. About 81.9, 61.4 and 53.3% of rice soils are classified as fine textured in Yeongsan, Dongjin, and Mangeong Watersheds, respectively. 5. More normal paddy soils and less sandy paddy soils are distributed in Yeongsan Watershed. The results indicate that more rice soils are classified as productivity classes of I and II in Yeongsan Watershed than in Mangeong-Dongjin Watersheds.

  • PDF

Extraction of Agricultural Land Use and Crop Growth Information using KOMPSAT-3 Resolution Satellite Image (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 작물 생육정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.411-421
    • /
    • 2009
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS-2 satellite images (May 25 of 2001, December 25 of 2001, and October 23 of 2003), QuickBird-2 satellite images (May 1 of 2006 and November 17 of 2004) and KOMPSAT-2 satellite image (September 17 of 2007) which resemble with the spatial resolution and spectral characteristics of KOMPSAT-3 were used. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique, and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of crop growth information, three crops of paddy, com and red pepper were selected, and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process was developed using the ERDAS IMAGINE Spatial Modeler Tool.

Spatial Anaylsis of Agro-Environment of North Korea Using Remote Sensing I. Landcover Classification from Landsat TM imagery and Topography Analysis in North Korea (위성영상을 이용한 북한의 농업환경 분석 I. Landsat TM 영상을 이용한 북한의 지형과 토지피복분류)

  • Hong, Suk-Young;Rim, Sang-Kyu;Lee, Seung-Ho;Lee, Jeong-Cheol;Kim, Yi-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.120-132
    • /
    • 2008
  • Remotely sensed images from a satellite can be applied for detecting and quantifying spatial and temporal variations in terms of landuse & landcover, crop growth, and disaster for agricultural applications. The purposes of this study were to analyze topography using DEM(digital elevation model) and classify landuse & landcover into 10 classes-paddy field, dry field, forest, bare land, grass & bush, water body, reclaimed land, salt farm, residence & building, and others-using Landsat TM images in North Korea. Elevation was greater than 1,000 meters in the eastern part of North Korea around Ranggang-do where Kaemagowon was located. Pyeongnam and Hwangnam in the western part of North Korea were low in elevation. Topography of North Korea showed typical 'east-high and west-low' landform characteristics. Landcover classification of North Korea using spectral reflectance of multi-temporal Landsat TM images was performed and the statistics of each landcover by administrative district, slope, and agroclimatic zone were calculated in terms of area. Forest areas accounted for 69.6 percent of the whole area while the areas of dry fields and paddy fields were 15.7 percent and 4.2 percent, respectively. Bare land and water body occupied 6.6 percent and 1.6 percent, respectively. Residence & building reached less than 1 percent of the country. Paddy field areas concentrated in the A slope ranged from 0 to 2 percent(greater than 80 percent). The dry field areas were shown in the A slope the most, followed by D, E, C, B, and F slopes. According to the statistics by agroclimatic zone, paddy and dry fields were mainly distributed in the North plain region(N-6) and North western coastal region(N-7). Forest areas were evenly distributed all over the agroclimatic regions. Periodic landcover analysis of North Korea based on remote sensing technique using satellite imagery can produce spatial and temporal statistics information for future landuse management and planning of North Korea.

A Scheme of Drainage Classification based on "Redness Rating" of the Profiles and Taxonomic Classification of Paddified Clayey Terrace Soils in Korea (토양단면(土壤斷面)의 적색도(赤色度)에 의한 식질단구답(埴質段丘畓)의 배수등급(排水等級) 결정(決定) 및 분류단위(分類單位) 설정(設定))

  • Jung, Youn-Tae;Um, Ki-Tae;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.96-100
    • /
    • 1984
  • To give basic information on the agricultural mechanization and multiple cropping adoptability of the paddified clayey terrace soils which have poor permeability and poor adoptability to mechanization, a scheme of drainage classification as well as taxonomic classification was intended. 1. The degrees of gleization of terrace paddy soils were well distinguished by the comparison of "Redness rating" of their profiles. 2. When the criteria of "Imperfectly drained" soils were defined as follows; Soils have more than 50cm of accumulated depth which has less than 0.5 in Redness rating within 1.2m of the profile, the Geugrag series could be classified to "Imperfectly drained." The tentative classification of drainage class of Geugrag soils seemed to well matching with land suitability groups, and give possibility of drainage recommendation in the case of dry land crop cultivation. 3. The Geugrag soil which was well paddified by artificial surface irrigation, could be proposed to classify "Anthroaquic Ochraqualfs."

  • PDF

Trend and Further Research of Rice Quality Evaluation (쌀의 품질평가 현황과 금후 연구방향)

  • Son, Jong-Rok;Kim, Jae-Hyun;Lee, Jung-Il;Youn, Young-Hwan;Kim, Jae-Kyu;Hwang, Hung-Goo;Moon, Hun-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.33-54
    • /
    • 2002
  • Rice quality is much dependent on the pre-and post harvest management. There are many parameters which influence rice or cooked rice qualitys such as cultivars, climate, soil, harvest time, drying, milling, storage, safety, nutritive value, taste, marketing, eating, cooking conditions, and each nations' food culture. Thus, vice evaluation might not be carried out by only some parameters. Physicochemical evaluation of rice deals with amy-lose content, gelatinizing property, and its relation with taste. The amylose content of good vice in Korea is defined at 17 to 20%. Other parameters considered are as follows; ratio of protein body-1 per total protein amount in relation to taste, and oleic/linoleic acid ratio in relation to storage safety. The rice higher Mg/K ratio is considered as high quality. The optimum value is over 1.5 to 1.6. It was reported that the contents of oligosaccharide, glutamic acid or its derivatives and its proportionalities have high corelation with the taste of rice. Major aromatic compounds in rice have been known as hexanal, acetone, pentanal, butanal, octanal, and heptanal. Recently, it was found that muco-polysaccharides are solubilized during cooking. Cooked rice surface is coated by the muco-polysaccharide. The muco-polysaccharide aye contributing to the consistency and collecting free amino acids and vitamins. Thus, these parameters might be regarded as important items for quality and taste evaluation of rice. Ingredients of rice related with the taste are not confined to the total rice grain. In the internal kernel, starch is main component but nitrogen and mineral compounds are localized at the external kernel. The ingredients related with taste are contained in 91 to 86% part of the outside kernel. For safety that is considered an important evaluation item of rice quality, each residual tolerance limit for agricultural chemicals must be adopted in our country. During drying, rice quality can decline by the reasons of high drying temperature, overdrying, and rapid drying. These result in cracked grain or decolored kernel. Intrinsic enzymes react partially during the rice storage. Because of these enzymes, starch, lipid, or protein can be slowly degraded, resulting in the decline of appearance quality, occurrence of aging aroma, and increased hardness of cooked rice. Milling conditions concerned with quality are paddy quality, milling method, and milling machines. To produce high quality rice, head rice must contain over three fourths of the normal rice kernels, and broken, damaged, colored, and immature kernels must be eliminated. In addition to milling equipment, color sorter and length grader must be installed for the production of such rice. Head rice was examined using the 45 brand rices circulating in Korea, Japan, America, Australia, and China. It was found that the head rice rate of brand rice in our country was approximately 57.4% and 80-86% in foreign countries. In order to develop a rice quality evaluation system, evaluation of technics must be further developed : more detailed measure of qualities, search for taste-related components, creation and grade classification of quality evaluation factors at each management stage of treatment after harvest, evaluation of rice as food material as well as for rice cooking, and method development for simple evaluation and establishment of equation for palatability. On policy concerns, the following must be conducted : development of price discrimination in conformity to rice cultivar and grade under the basis of quality evaluation method, fixation of head rice branding, and introduction of low temperature circulation.

Classification According to Site of Action of Paddy Herbicides Registered in Korea (국내 수도용 제초제의 작용기작별 분류)

  • Park, Jae-Eup;Kim, Sang-Su;Kim, Young-Lim;Kim, Min-Ju;Ha, Heun-Young;Lee, In-Yong;Moon, Byung-Chul;Ihm, Yang-Bin
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2014
  • This review study was conducted to recommend the effective use of herbicide mixtures in Korea. The herbicide ingredients by Herbicide Resistancce Action Committee (HRAC) was classified into 23 groupes according to the mode of action (acetyl CoA carboxylase inhibitors, acetolactate synthase, photosystem I and II inhibitors, protoporphyrinogen oxidase inhibitors, carotenoid biosynthesis inhibitors, enolpyruvyl shikimate-3-phosphate synthase inhibitors, glutamine synthetase inhibitors, dihydropteroate synthetase inhibitors, mitosis inhibitors, cellulose inhibitors, oxidative phosphorylation uncouplers, fatty acid and lipid biosynthesis inhibitors, synthetic auxins, auxin transport inhibitors and potential nucleic acid inhibitors or non-descript mode of action). The rice herbicide mixtures registered in Korea were classified based on the guideline of HRAC. Accordingly, such a classification system for resistance management can help to avoid continuous use of the herbicide having the same mode of action in the same field.

Soil Problems and Agricultural Water Management of the Reclaimed Land in Korea (한국의 간척지에서 토양 문제와 농업 용수 관리)

  • Jung, Yeong-Sang;Yoo, Chul-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.330-348
    • /
    • 2007
  • Soil problems and agricultural water management of the reclaimed land in Korea were reviewed through research results conducted in RDA and ADC. According to the Korean Soil Classification and Soil Survey(NIAST, 2002), the 5 soil orders with the 45 soil series were distributed on the fluvio-marine or marine deposit of the west and south coastal plains. Yeompo, Munpo, Hasa, Gwangwhal, and Poseung soil series were most commonly distributed soil on the fluvio-marine deposits, associated with tideland of the sea coast. Former 4 soils were Entisols, and the latest one was the Inceptisols. Buyong soil associated with Poseung series was an Alfisols. Extent of Myeongji soil, a Molisols, and Yongho soil, a Histosol, were minor. Salinity control and management problems were closely related with high water table and low percolation rate due to plow-pan layer developed during the leaching process in the silty textured soil. For evaluation of field salinity, use of an electromagnetic inductance, EM38, with GPS was helpful to understand salinity status and field variability. Deep plowing, subsoiling and drainage improvement by tile drainage might be effective in paddy with plow-pan. New technology such as variable rate fertilization might save fertilizers and thus reduce environmental impact of agriculture on water quality. Water quality of agricultural water resources in reclaimed land was less adequate than that of inland water resources. Proper crop management is necessary depended upon quality for crop growth as well as to match with water quality target.

Classification of Mountain-Village Areas by the Site Characteristics (입지적(立地的) 특성(特性)을 고려(考慮)한 산촌지역(山村地域)의 유형분류(類型分類)에 관한 연구(硏究))

  • Shon, Cheol Ho;Youn, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.46-55
    • /
    • 1997
  • This study tried to categorize the types of mountain-village areas in terms of some key variables representing the socio-economic and natural characteristics in order to provide basic information for policy formation of mountain areas. Cross-sectional data of the year 1990 for 900 sub-counties were collected to analyse the characteristics of mountain-village areas. Eleven variables were selected to classify the types of sub-county levels. According to the results of the study, the socio-economic conditions of mountain-village areas represented by the number of corporations, number of non-farming households, and population density of mountain-village areas were found to be inferior to other parts of the nation while the proportion of forest land, share of non-paddy crop fields, distance from cities, percentage of farming households, and elevation from the sea-level were higher to the other areas. By the principal factor analysis, the key variables representing industrial development, mountain-ousness, and accessibility from near cities were selected. By a cluster analysis employing the selected variables, 5 different types of mountain-village areas were categorized.

  • PDF

Soil Classification of Paddy Soils by Soil Taxonomy (미국신분류법(美國新分類法)에 의(依)한 답토양의 분류(分類)에 관한 연구)

  • Joo, Yeong-Hee;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1979
  • According to Soil Taxonomy which has been developed over the past 20 years in the soil conservation service of the U. S. D. A, Soils in Korea are classified. This system is well suited for the classification of the most of soils. But paddy field soils have some difficulties in classification because Soil Taxonomy states no proposals have yet been developed for classifying artificially irrigated soils. This paper discusses some problems in the application of Taxonomy and suggestes the classification of paddy field soils in Korea. Following is the summary of the paper. 1. Anthro aquic, Aquic Udipsamments : The top soils of these soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) more than 50cm of the soil surface. (Ex. Sadu, Geumcheon series) 2. Anthroaquic Udipsamments : These sails are like Anthroaquic, Aquic Udipsamments except for the mottles of low chroma within 50cm of the soil surface. (Ex. Baegsu series) 3. Halic Psammaquents : These soils contain enough salts as distributed in the profile that they interfere with the growth of most crop plants and located on the coastal dunes. The water table fluctuates with the tides. (Ex. Nagcheon series) 4. Anthroaquic, Aquic Udifluvents : They have some mottles that have chroma of 2 or less in more than 50cm of the surface. The upper horizon is saturated with irrigated water at sometime. (Ex. Maryeong series) 5. Anthro aquic Udifluvents : These soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) within 50cm of the surface soils. (Ex. Haenggog series) 6. Fluventic Haplaquepts : These soils have a content of organic carbon that decreases irregularly with depth and do not have an argillic horizon in any part of the pedon. Since ground water occur on the surface or near the surface, they are dominantly gray soils in a thick mineral regolith. (Ex Baeggu, Hagseong series) 7. Fluventic Thapto-Histic Haplaquepts : These soils have a buried organic matter layer and the upper boundary is within 1m of the surface. Other properties are same as Fluventic Haplaquepts. (Ex. Gongdeog, Seotan series) 8. Fluventic Aeric Haplaquepts : These soils have a horizon that has chroma too high for Fluventic Haplaquepts. The higher chroma is thought to indicate either a shorter period of saturation of the whole soils with water or some what deeper ground water than in the Fluventic Haplaquepts. The correlation of color with soil drainage classes is imperfect. (Ex. Mangyeong, Jeonbug series) 9. Fluventic Thapto-Histic Aeric Haplaquepts : These soils are similar to Fluventic Thapto Histic Haplaquepts except for the deeper ground water. (Ex. Bongnam series) 10. Fluventic Aeric Sulfic Haplaquepts : These soils are similar to Fluventic Aeric Haplaquepts except for the yellow mottles and low pH (<4.0) in some part between 50 and 150cm of the surface. (Ex. Deunggu series) 11. Fluventic Sulfaquepts : These soils are extremely acid and toxic to most plant. Their horizons are mostly dark gray and have yellow mottles of iron sulfate with in 50cm of the soil surface. They occur mainly in coastal marshes near the mouth of rivers. (Ex. Bongrim, Haecheog series) 12. Fluventic Aeric Sulfaquepts : They have a horizon that has chroma too high for Fluventic Sulfaquepts. Other properties are same as Fluventic Sulfaquepts. (Ex. Gimhae series) 13. Anthroaquic Fluvaquentic Eutrochrepts : These soils have mottles of low chroma in more than 50cm of the surface due to irrigated water. The base saturation is 60 percent or more in some subhroizon that is between depth of 25 and 75cm below the surface. (Ex. Jangyu, Chilgog series) 14. Anthroaquic Dystric Fluventic Eutrochrepts : These soils are similar to Anthroaquic Fluvaquentic Eutrochrepts except for the low chroma within 50cm of the surface. (Ex. Weolgog, Gyeongsan series) 15. Anthroaquic Fluventic Dystrochrepts : These soils have mottles that have chroma of 2 or less within 50cm of the soil surface due to artificial irrigation. They have lower base saturation (<60 percert) in all subhorizons between depths of 25 and 75cm below the soil surface. (Ex. Gocheon, Bigog series) 16. Anthro aquic Eutrandepts : These soils are similar to Anthroaquic Dystric Fluventic Eutrochrepts except for lower bulk density in the horizon. (Ex. Daejeong series) 17. Anthroaquic Hapludalfs : These soils' have a surface that is saturated with irrigated water at some time and have chroma of 2 or less in the matrix and higher chroma of mottles within 50cm of the surface. (Ex. Hwadong, Yongsu series) 18. Anthro aquic, Aquic Hapludalfs : These soils are similar to Anthro aquic Hapludalfs except for the matrix that has chroma 2 or less and higher chroma of mottles in more than 50cm of the surface. (Ex. Geugrag, Deogpyeong se ries)

  • PDF