Soil Problems and Agricultural Water Management of the Reclaimed Land in Korea

한국의 간척지에서 토양 문제와 농업 용수 관리

  • Jung, Yeong-Sang (College of Agriculture and Life Sciences, Kangwon National University) ;
  • Yoo, Chul-Hyun (Honam Agricultural Research Institute, Rural Development Administration)
  • 정영상 (강원대학교 농업생명과학대학 농업과학연구소) ;
  • 류철현 (농촌진흥청 호남농업연구소)
  • Received : 2007.06.11
  • Accepted : 2007.08.02
  • Published : 2007.08.28

Abstract

Soil problems and agricultural water management of the reclaimed land in Korea were reviewed through research results conducted in RDA and ADC. According to the Korean Soil Classification and Soil Survey(NIAST, 2002), the 5 soil orders with the 45 soil series were distributed on the fluvio-marine or marine deposit of the west and south coastal plains. Yeompo, Munpo, Hasa, Gwangwhal, and Poseung soil series were most commonly distributed soil on the fluvio-marine deposits, associated with tideland of the sea coast. Former 4 soils were Entisols, and the latest one was the Inceptisols. Buyong soil associated with Poseung series was an Alfisols. Extent of Myeongji soil, a Molisols, and Yongho soil, a Histosol, were minor. Salinity control and management problems were closely related with high water table and low percolation rate due to plow-pan layer developed during the leaching process in the silty textured soil. For evaluation of field salinity, use of an electromagnetic inductance, EM38, with GPS was helpful to understand salinity status and field variability. Deep plowing, subsoiling and drainage improvement by tile drainage might be effective in paddy with plow-pan. New technology such as variable rate fertilization might save fertilizers and thus reduce environmental impact of agriculture on water quality. Water quality of agricultural water resources in reclaimed land was less adequate than that of inland water resources. Proper crop management is necessary depended upon quality for crop growth as well as to match with water quality target.

한국의 간척지에서 토양 문제와 농업 용수 관리에 대해 농촌진흥청과 농업기반공사 등에서 이루어진 연구를 통해 얻어진 결과를 토대로 하여 개관하였다. 한국토양분류와 조사에 의하면, 5개 토양목의 45개 토양통이 서남해안의 하해혼성 또는 해성 퇴적지에 분포하고 있었다. 염포, 문포, 하사, 광활, 포승통이 해안의 간석지에 연접한 하해혼성 퇴적지에 가장 많이 분포하고 있는 토양통들이었다. 염포 등 앞의 4개 토양통은 엔티솔이며, 포승통은 인셉티솔이었다. 포승통과 연접한 부용통 등은 알피솔이었다. 몰리솔인 명지통, 히스토솔인 용호통 등의 분포 면적은 적었다. 염류도 제어와 관리 문제는 높은 지하수위와 미사가 많은 간척지 토양에서 제염 과정에서 생성된 경운 반층에 의한 낮은 투수 속도와 밀접한 관련이 있다. 포장에서 염류의 평가에 있어서 GPS와 결합된 전자장 유도 EM38이 염류도와 포장 변이를 이해하는 데 유용하였다. 심경, 심토 파쇄, 암거에 의한 배수 개선 등은 경운 반층이 형성된 논에서 효과적이었다. 변량 시비와 같은 신기술은 비료를 절감하고 수질에 대한 농업 영향을 감축시킬 가능성이 있었다. 간척지에서 농업용수의 수질은 내륙 수자원의 수질보다 열악하였다. 작물 생육에 알맞은 수질과 함께 목표 수질 달성에 맞추어 갈 수 있는 작물 관리가 필요하였다.

Keywords

References

  1. Cameron, D.R., E. Dejong, D.W.L. Read, and M. Oosterveld. 1981. Mapping salinity using resistivity and electromagnetic inductive techniques. Can. J. Soil Sci. 61:67-78 https://doi.org/10.4141/cjss81-008
  2. FAO. 1995. Water quality for agriculture. 28 Rev. 1. FAO/UN:pp174
  3. HARI. 2004. Reclamation agriculture. RDA;pp426
  4. Jung, Y. S., H. J. Lee, and J. G. Park. 2005. Field variability and variable rate fertilization of nitrogen in a direct seeding paddy for precision agriculture. J. KSSSF. 38:202-210
  5. Jung, Y. S., J. H. Joo, S. Y. Yoon. 2002. A Management guideline for soil and irrigation water in the reclaimed saline land. IAS., Kangwon Nat. Univ: pp234
  6. Jung, Y. S., J. H. Joo, S. C. Kwon, J. N. Im, M. H. Shin, K. W. Choi. 2004. Wind erodibility of the Saemangeum tideland reclamation project area. Korean J. soil Sci. fert. 37:207-211
  7. Jung, Y. S., H. J. Lee, J. H. Chung, C. S. Kang, J. K. Park. 2005. Field variability and variable rate fertilization of nitrogen in a direct seeding paddy for precision agriculture. J. KSSSF. 38:202-210
  8. Jung, Y. S., S. H. Yoo, Y. An, J. H. Joo, I. H. Yu. 2002. Changes in salinity, hydraulic conductivity and penetration resistance of a silt loam soil in a reclaimed tidal land. J. KSSSF 35:207-215
  9. Lee, C. H., and Y. S. Jung. 1991. General Chemistry. KNOU Publ: pp342
  10. Lee, H. J., and Y. S. Jung. 1993. Sustainable farm management in crop production. International Symposium on Sustainable Agriculture and Environment. Sept 17,1993. Seoul Nat. Univ.:3155
  11. Lesch, S.M., J.D. Rhoades, L.J. Lund, and D.L. Corwin. 1992. Mapping soil salinity using calibrated electromagnetic measurements. Soil Sci. Soc. Am. J. 54:290-293
  12. McNeal, B.L., D.A. Layfield, W. A. Norvell, and J.D. Rhoades. 1968. Factors influencing hydraulic conductivity of soils in the presence of mixed salt solutions. Soil Sci. Soc. Am. Proc. 32:187-190
  13. ME (Ministry of Environment). 2004. The total pollution load policy. www.me.go.kr
  14. NIAST, National Institute of Agricultural Science and Technology. 1999. Nutrient Prescription for Various Crops(In Korean). NIAST, RDApp145
  15. NIAST. 2000. Taxonomical classification of Korean soils. NIAST, RDA:pp809
  16. NRC, National Research Council. 1977. Precision Agriculture in the 21st Century. Geospatial and Information Technologies in Crop Management. National Academy Press. Washington, D. C. :pp149
  17. Ryu, S. H. 2000. Dictionary of Soil Sciences(Korean). SNU Publ.:pp729
  18. Ryu, S. H. Y. S. Jung, Yeol Ahn, and S. H. Lee. 1998. A study on the crop cultivation by the improvement of desalinization techniques on the reclaimed farmland. ADC:pp318
  19. Seo, J. H., H. J. Lee, Y. S. Jung, S. H. Lee. 2002. Soil and yield mapping and nutrient recommendation for precision agriculture in rice paddy. J. Korean Society of Precision Agriculture 1(1):51-60
  20. SSSA. 1996. Glossary of Soil Science Terms. Soil Science Society of American:pp134
  21. US Salinity Laboratory. 1954. Diagnosis and improvement of saline and alkaline soils. USDA Hb, 60:pp160