• Title/Summary/Keyword: PWm Rectifier

Search Result 287, Processing Time 0.018 seconds

A Study on Conducted EMI Emission Characteristics in 3-Phase PWM Converter (3상 PWM 컨버터의 전도성 EMI 특성에 관한 연구)

  • 채영민;고재석;목형수;최규하;홍순찬;백수현;이은웅
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.41-48
    • /
    • 1997
  • Nowadays, EMI emission characteristics, which causes harmful effect on power distribution system and other equipments, have been studied in field of Power electronics, vigoriously. So, in this paper, the conducted EMI emission is measured and compared for 3-phase diode rectifier and PWM converter according to switching frequency variation and current control method change using LISN(Line Impedance Stabilization Network) and spectrum analyzer.

  • PDF

A Study on The Three-Phase Active Power Filter Using Voltage-Source PWM Converter (전압형 PWM 컴버터를 이용한 3상 능동 전력 필터에 관한 연구)

  • 박민호;김한성;최규하;이제필
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.5
    • /
    • pp.370-379
    • /
    • 1989
  • This paper describes a three-phase active power filter using voltage-source PWM converter, which can eliminate the harmonics and compensate the reactive power in the ac sides of 6-pulse rectifier. The active filter consists of three-phase PWM inverter and a capacitor, and the hysteresis control technique is used to make the compensating current close to the existing harmonic current and also to improve the response of the filter with simple control circuit. As a result the compensated ac line current becomes sinusoidal and the input power factor is improved roughly to unity.

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF

A NEW High Efficiency Soft-Switching Three-Phase PWM Rectifier (새로운 고효율 소프트 스위칭 3상 PWM 정류기)

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Kwon Soon-Kurl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.49-58
    • /
    • 2005
  • A new soft switching three-phase PWM rectifier with simple circuit configuration and high efficiency has been developed. The proposed circuit is a kind of the auxiliary resonant commutated Pole(ARCP)converter The conventional ARCP converter requires three-auxiliary reactors and six-auxiliary switches for the soft switching auxiliary circuit and for these switching elements, a gate drive circuit and a control circuit are required, resulting in high part as a disadvantage. In the main circuit proposed in this paper, the auxiliary soft switching circuit is composed of two-auxiliary reactors, two-auxiliary switches and several diodes. In addition, common use of the PWM control circuit for two-switches will make the control circuit of the auxiliary switches simple. By means of function of the soft switching auxiliary circuit, the main switching element performs zero voltage switching operation and the auxiliary switches perform the zero current switching. In this paper, the circuit configuration and the operational analysis of the proposed circuit are described at first and then, experimental results will be reported. By using a prototype with 5[kW] capacity, the conversion efficiency of maximum $98.8[\%]$ and the power factor of $99[\%]$ or higher were obtained.

A Study on Excitation System for Synchronous Generator Using Two State Three Phase PWM AC/DC Converter (2단 3상 PWM AC/DC 컨버터를 이용한 동기발전기 여자제어시스템)

  • Lee, Sang-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.96-106
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system. Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system. In the case of diode rectifier system of phase controlled converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, two stage three phase PWM AC/DC converter is studied to solve these problems. The characteristics of a proposed converter reduces the harmonics and reactive power of the distribution line and has fast dynamic response in transient period using boost converter and current control mode buck converts. The proposed method is verified by the computer simulation and experimental results in prototype generation system.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Analysis of Multi Level Current Source GTO Inverter for Induction Motor Drives

  • Arase, Takayuki;Matususe, Kouki
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.535-540
    • /
    • 1998
  • This paper discusses a triple stage current source GTO inverter system for high power motor drives. The energy rebound circuit of the triple stage inverter not only controls the spike voltage of the GTO inverter but also facilitates PWM control of the thyristor rectifier operated at unity fundamental input power factor. Based on Pspice simulation and experiments, the principles and PWM pulse pattern for removing specific lower harmonics in the inverter's output current are discussed in detail.

  • PDF

Propulsion Control Method of Railway Vehicle Considering Output Characteristic of Single Phase PWM Rectifier (단상 PWM 정류기의 출력 특성을 고려한 철도 차량의 추진 제어 방법)

  • PARK, J.H.;LEE, C.H.;KIM, T.H.;LIM, D.G.;WON, C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.211-212
    • /
    • 2015
  • 전동차는 판토그라프를 통하여 전력을 공급받아 견인전동기를 구동시켜 운전을 하는 시스템으로 구성되어 있다. 본 논문에서는 전력 공급 선로에서부터 견인전동기의 구동까지 추진제어장치의 구성을 기술하고, 교류 가선에서 각 전력변환장치의 제어 방법에 대하여 기술하였다.

  • PDF

A New 12-Pulse Diode Rectifier System With Low kVA Components For Clean Power Utility Interface

  • ;Prasad N.Enjeti
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.423-432
    • /
    • 1999
  • This paper proposes a 12­pulse diode rectifier system with low kVA components suitable for powering switch mode power supplies or ac/dc converter applications. The proposed 12-pulse system employs a polyphase transformer, a zero sequence blocking transformer (ZSBT) in the dc link, and an interphase transformer. Results produce near equal leakage inductance in series with each diode rectifier bridge ensuring equal current sharing and performance improvements, The utility input currents and the voltage across the ZSBT are analyzed the kVA rating of each component in the proposed system is computed. The 5th , 7th , 17th and 19th harmonics are eliminated in the input line currents resulting in clean input power. The dc link voltage magnitude generated by the proposed rectifier system is nearly identical to a conventional to a conventional 6-pulse system. The proposed system is suitable to retrofit applications as well as in new PWM drive systems. Simulation and experimental results from a 208V , 10kVA system are shown.

  • PDF

Three-Phase Three-Switch Buck-Type Rectifier Based on Current Source Converter for 5MW PMSG Wind Turbine Systems

  • Chae, Beomseok;Suh, Yongsug;Kang, Tahyun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1501-1512
    • /
    • 2018
  • This paper proposes a three-phase three-switch buck-type converter as the MSC of a wind turbine system. Owing to a novel switching modulation scheme that can eliminate the unwanted diode rectifier mode switching state, the proposed system exhibits a satisfying ac voltage and current waveform quality and torque ripple up to the level of a typical current source rectifier even under a wide power factor operating range. The proposed system has been verified through simulations and HILS tests on a PMSG wind turbine model of 5MW/4160V. The proposed converter has been shown to provide a stator current THD of 3.9% and a torque ripple of 1% under the rated power condition. In addition to the inherent advantage of the reduced switch count of three-phase three-switch buck-type converters, the proposed switching modulation technique can make this converter a viable solution for the MSC placed inside of a nacelle, which is under severe volume, weight and mechanical vibration design limits.