• Title/Summary/Keyword: PWM-MODE

Search Result 448, Processing Time 0.026 seconds

PSPICE modeling of commercial ICs for Flyback converter Multi Mode PWM. (Flyback 컨버터 Multi Mode PWM을 위한 상용 IC의 PSPICE 모델링)

  • Lee, Yoon-min;Park, So-young;Kim, Byeong-seok;Roh, Chung-wook
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.360-361
    • /
    • 2013
  • 본 논문에서는 Power Integration사의 플라이백 컨버터 제어 IC인 TOP258YN의 주요 기능을 PSPICE로 구현 및 검증하였다. PSPICE를 이용한 IC 모델링을 통하여 제한적으로 제공되던 IC의 모델링을 시뮬레이션이 가능하도록 하였다. 모델링를 이용하여 실시한 시뮬레이션과 회로 실험 비교를 통하여 본 논문을 검증한다.

  • PDF

Design of a Tripple-Mode DC-DC Buck Converter (3중 모드 DC-DC 벅 변환기 설계)

  • Yu, Seong-Mok;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.134-142
    • /
    • 2011
  • This paper describes a tripple-mode high-efficiency DC-DC buck converter. The DC-DC buck converter operate in PWM(Pulse Width Modulation) mode at moderate to heavy loads(100mA~500mA), in PFM(Pulse Frequency Modulation)at light loads(1mA~100mA), and in LDO(Low Drop Out) mode at the sleep mode(<1mA). In PFM mode DPSS(Dynamic Partial Shutdown Strategy) is also employed to increase the efficiency at light loads. The triple-mode converter can thus achieve high efficiencies over wide load current range. The proposed DC-DC converter is designed in a CMOS 0.18um technology. It has a maximum power efficiency of 96.4% and maximum output current of 500mA. The input and output voltages are 3.3V and 2.5V, respectively. The chip size is 1.15mm ${\times}$ 1.10mm including pads.

A Triple-Mode DC-DC Buck Converter with DPSS Function (DPSS 기능을 갖는 3중 모드 DC-DC Buck 변환기)

  • Yu, Seong-Mok;Hang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.411-414
    • /
    • 2011
  • This paper describes a tripple-mode DC-DC buck converter with DPSS Fucntion. The DC-DC buck converter operate in PWM(Pulse Width Modulation) mode at moderate to heavy loads(80mA~500mA), in PFM(Pulse Frequency Modulation)at light loads(1mA~80mA), and in LDO(Low Drop Out) mode at the sleep mode(<1mA). In PFM mode DPSS(Dynamic Partial Shutdown Strategy) is also employed to increase the efficiency at light loads. The triple-mode converter can thus achieve high efficiencies over wide load current range. The proposed DC-DC converter is designed in a CMOS 0.18um technology. It has a maximum power efficiency of 97.02% and maximum output current of 500mA. The input and output voltages are 3.3V and 2.5V, respectively. The chip size is $1465um{\times}895um$ including pads.

  • PDF

A Novel ZCS PWM Boost Converter with operating Dual Mode (Dual 모드로 동작하는 새로운 ZCS PWM Boost 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.346-352
    • /
    • 2002
  • A novel Zero Current Switching(ZCS) Pulse Width Modulation(PWM) boost converter with dual mode for reducing two rectifiers reverse recovery related losses is proposed. The switches of the proposed converter are operating to work alternatively turn-on and turn-off with soft switching condition In the every cycle and the proposed converter reduces the reverse recovery current, which is related switching losses and EMI problems, of the free-wheeling diode$(D_1, D_2)$ by adding the resonant inductor Lr, in series with the switch $S_1$. The switching components$(S_1, S_2, D, D_1)$ in the proposed boost converter are subjected to minimum voltage and current stresses same as those in their PWM counterparts because there are no additional active switches and resonant elements compared with the conventional ZVT PWM $converters^{[2]}$. The operation of the proposed converter, in this paper, is analyzed and to verify the feasibility of the characteristics is built and tested.

A Study on the Dual PWM Digital Excitation System of Regeneration Type (회생형 이중화 PWM 방식의 디지털 여자시스템에 관한 연구)

  • Ryu, Ho-Seon;Lee, Joo-Hyun;Lim, Ick-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.79-84
    • /
    • 2010
  • This paper discusses the control of generator field using dual IGBT PWM regeneration method to target brushless synchronous generator. If one of PWM bridges happens to fault, it transfers automatically and can be in charge of full load. Also it has an advantage of the operation which UPS connected in parallel with PWM bridge can supply power to excitation system in condition of main power loss. This PWM system supplies field current to generator in one quadrature operation, regenerates field coil energy to main power supplier in four quadrature operation. We designed, manufactured and applied the first trial product at J-power plant.

A Study on the PWM Strategy and Gear Changing Techniques of an Inverter for Variable Speed Drives on Traction Motors (견인전동기 가변속 운전을 위한 인버터의 PWM 방법 및 패턴 절환기법에 관한 연구)

  • Seo, Yeong-Min;Park, Yeong-Jin;Hong, Sun-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.646-654
    • /
    • 1999
  • This paper deals with PWM patterns for harmonic reduction in inverter fed traction motors and the gear changing techniques for the variable speed drive of traction motor. GTOs are used as switching device of inverter because traction motor is a large load. To derive PWM rattern which can minimize the harmonics with the limited switching frequency, the output current and torque characteristic of SPWM and SHE PWM was analyzed. GTO inverter used for traction motor drive includes harmonics in the output current and torque by the limitation of switching frequency. However, the hybrid PWM method that adopt SPWM in the range of low frequency and SHE PWM in upper frequency range can achieve less harmonic characteristics in GTO inverters. If the traction motor is driven in variable speed by the proposed PWM pattern, 7 times of gear changing is needed. At the instant of the mode change, magnetic flux and torque may be altered and the large current flow. To reduce such an undesirable transient behavior, it is also presented the technique for the gear changing of inverter fed traction motor drive operated with the hybrid PWM. The results are verified by simulations and experiments.

  • PDF

A Study on Parallel Operation Between Inverter System and Utility Line (인버터 시스템과 상용 전력 계통과의 병렬 운전에 관한 연구)

  • 천희영;박귀태;유지윤;안호균
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.369-378
    • /
    • 1992
  • This paper proposes a utility parallel processing inverter system, which consists of a voltage source PWM inverter, isolation transformer and a reactor linking the inverter to utility line. This system realizes following functions : (1) voltage phase frequency and amplitude synchronization between inverter and utility line at stand-alone mode. (2) current phase synchronization between inverter and load at parallel mode. Therefore, despite sudden increase in load current over setting point at stand-alone mode, inverter system can be transferred into parallel mode immediately without transient current. Furthermore, high frequency(18KHz) PWM control and sinusoidal filtering improve the inverter output waveform by eliminating high order harmonic components as well as low order. As a switching device, IGBT is used for high frequency switching and large current capacity.

  • PDF

Antl-Lock Brake System Control for Buses Based on Fuzzy Logic and a Sliding-Mode Observer

  • Park, Jong-Hyeon;Kim, Dong-Hee;Kim, Yong-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1398-1407
    • /
    • 2001
  • In this paper an anti-lock brake system (ABS) for commercial buses is proposed based on a fuzzy-logic controller and a sliding-mode observer of the vehicle speed. The brake controller generates pulse width modulated (PWM) control inputs to the solenoid valve of each brake, as a function of the estimated wheel slip ratio. PWM control inputs at the brakes significantly reduce chattering in the brake system compared with conventional on-off control inputs. The sliding-mode observer estimates the vehicle speed with measurements of wheel speed, which is then sed to compute the wheel slip ratio. The effectiveness of the proposed control algorithm is validated by a series of computer simulations of bus driving, where the 14-DOF bus model is used.

  • PDF

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2005
  • In this paper, a DC and small-signal AC modeling for the active-clamp, ful1-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a dc counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM(Continuous conduction mode) boost and DCM(Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

The Suppression of both Leakage-current and Surge voltage occuring Variable-speed AC Drives (가변속 AC 드라이브 시스템에 발생하는 누설전류와 서지전압의 억제)

  • Park Jin-Min;Lee Hyun-Woo;Kim Young-Mun;Mun Sang-Phil;Suh Ki-Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1232-1234
    • /
    • 2004
  • In this paper, we represent both occurrence reason of Surge-voltage and Leakage current of AC drive system which is operated by Voltage-type PWM Inverter. It generates a compensating voltage which has the same amplitude as, but the opposite phase to, the common-mode voltage produced by the PWM inverter. The compensating voltage is superimposed on the inverter output by a common-mode transformer. As a result, the common-mode voltage applied to the load is canceled completely. The design method of the active common-mode noise canceler is also presented in detail. Therefore, we try to describe the method controling both of them and all of the proprieties are proved by our experiment.

  • PDF