• Title/Summary/Keyword: PWM signal

Search Result 357, Processing Time 0.033 seconds

The Implementation of Sub-MRA PWM Technique Using DSP (DSP를 이용한 Sub-MRA PWM 기법의 실현)

  • 이성백;이종규;원영진;한완옥;박진홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.2
    • /
    • pp.41-45
    • /
    • 1994
  • In this paper, it is implemented that Sub- MRA PWM techinque which is applied to MRA PWM technique using the Digital Signal Processor. Unstable element of analog is reduced for Sub - MRA PWM technique by digital signal pressing. And harmonic is analized by simulation to verify that. It is afford the process induction motor control with real time by minimizing the delay time of digital system. Time delay which is a defect of digital control can by minimized using fast caculation. Therefore, real time control is implemented in the induction motor

  • PDF

Speed Control of PMSM using DTC-PWM Approach (DTC-PWM 방식에 의한 PMSM의 속도 제어 기법)

  • Lee, Dong-Hee;Choo, Young-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.268-277
    • /
    • 2009
  • This paper presents an DTC-PWM (Direct Torque Control-Pulse Width Modulation) of PMSM (Permanent Magnet Synchronous Motor). The proposed DTC-PWM method combines a conventional DTC and PWM approach for switching signal generation. The actual torque is estimated by the torque estimator in conventional method, but the switching signal is generated by PWM method according to the switching rules and torque error. A effective voltage vector and zero vector are used to generate the switching signals and asymmetric switching method is applied. A simple calculation of PWM without any complex determination of space vector can assure the constant switching frequency with an constant torque and flux. The proposed torque control scheme for PMSM is verified by experimental results.

New Zero-Voltage-Switching PWM Inverter (새로운 제로 전압 스위칭 PWM 인버터)

  • 곽동걸;이현우;서기영;권순걸;우정인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.47-50
    • /
    • 1992
  • In this paper, the authors propose a so-called new zero voltage switching circuit topology arts an improved PWM strategy. In order to minimize voltage stress in dc-ac high switching frequency power conversion, the proposal circuit is used as interface between DC sully and the PWM inverter. The new ZVS circuit provide PWM inverter with a short zero voltage period in the dc 1ink just before inverter switches operate. By using the proposed modulating signal (transformational sinewave) art carrier sinal (sawtooth ware), the amplitude of the fundamental component is increased about 15 percent more than that of a conventional sinusoidal modulating signal and triangular carrier signal, the switching tosses is reduced. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

A Method to Adjust the Optimal Phase Angle of Resolver Excitation Signal (레졸버 여자신호의 최적 위상 조정 방법)

  • Kim, Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.252-258
    • /
    • 2010
  • If the speed measurement of resolver and the generation of PWM signals are implemented with single microcontroller, it is easy to reduce the system cost and to avoid the switching noise of inverters. To avoid the switching noise and to improve the accuracy of measurement, PWM switching and A/D sampling of the resolver should be synchronized. Phase angle of the resolver excitation signal is increased in stepwise manner, then, the output signal of the resolver is measured in each step. From the measured data, the optimal phase angle of resolver excitation signal is estimated using the least square approximation method.

A Switching Technique for Common Mode Voltage Reduction of PWM-Inverter Induction Motor Drive System Using TMS320F240 (TMS320F240을 이용한 PWM 인버터 유도전동기 구동 시스템의 전도노이즈 저감을 위한 스위칭 기법)

  • 박규현;김이훈;원충연;김규식;최세완;함년근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2003
  • High frequency common mode voltage produced by PWM inverter fed Induction motor is a major cause of conducted EMI, creation motor ground currents, bearing currents and other harmful products. The zero switching states of inverter control invoke large in comparison with the non-zero switching state of Inverter control. We proposed a common mode voltage reduction method based on sinusoidal PWM technique. PWM signal are generated by comparing respective sinusoidal reference signal with three triangular carrier wave displaced of 120$^{\circ}$. Simulation and experimenta1 result show that common mode voltages in the proposed PWM technique are reduced by approximate 66% more than conventional FWM technique.

A PWM Phase-Shift Circuit using an RC Delay for Multiple LED Driver ICs

  • Oh, Jae-Mun;Kang, Hyeong-Ju;Yang, Byung-Do
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.484-492
    • /
    • 2015
  • This paper proposes a PWM phase-shift circuit to make that the LED lighting system distributes the channel currents evenly for any number of LED strings by generating evenly phase-shifted PWM signals for multiple LED driver ICs. The evenly distributed channel currents reduce the peak current, the decoupling capacitor size, and EMI noise. The PWM phase-shift circuit makes an arbitrary degree of PWM phase-shift by using a resistor and a capacitor. It measures the RC delay once. It reduces the number of external resistors and capacitors by providing zero and 180 degree phase-shift modes requiring no resistor and capacitor. An LED driver IC with the PWM phase-shift circuit was fabricated with a $0.35{\mu}m$ BCDMOS process. The PWM phase-shift circuit receives a PWM signal of 50 Hz~20 kHz at $f_{CLK}=450kHz$ and it generates a $0{\sim}360^{\circ}$ phase-shifted PWM signal with $R=0{\sim}1.1M{\Omega}$ at C=1 nF and $f_{PWM}=1kHz$. The measured phase errors are 1.74~3.94% due to parasitic capacitances.

Dynamic Investigation of the Brushless DC Motor

  • Sirilappanich, Surachet;Somchaiwong, Nitipong;Pongswatd, Sawai;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1867-1870
    • /
    • 2003
  • The analysis and simulation are the method to study the behavior, response, and specification of the driver device. This paper proposes brushless DC drive which using the vector control technique. The encoder is used detect the rotor position and decode to Three-phase step signal. The step signal is modulated with triangle signal and change to the pulse width modulation (PWM) signal. The PWM signal is used for control the input power of the motor based on the vector control technique. The experimental results of the driver circuit and motor response performed under the following condition: as the motor was started, change the load torque, and vary the supply voltage. The experimental performs with a dynamometer and the test results are compared to the simulation method is the same result.

  • PDF

A Study on Response Improvement of a Proportional Solenoid Actuator (비례제어 솔레노이드 액추에이터의 응답성 향상 연구)

  • Yun, So Nam;Ham, Young Bog;Park, Jung Ho
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.47-52
    • /
    • 2016
  • This paper presents a control method for the performance improvement of a proportional solenoid actuator using a Pulse Width Modulation (PWM) signal. It is very difficult to obtain excellent response performance from a proportional solenoid actuator using a simple proportional controller with no PWM signal or dither because the mass and structure of a proportional solenoid actuator changes according to the application target, friction force in the proportional solenoid tube, operating force and displacement range. To solve the above problems, first, a controller with a PWM function for experimenting with attraction force characteristics was designed and manufactured. Secondly, an experimental setup for solenoid performance measurement with a force sensor and a displacement sensor was also manufactured. The attraction force characteristics according to the frequency and duty ratio variations of a PWM signal were tested and the relationships among the frequency, duty ratio, plunger mass and friction characteristics were analyzed. Finally, response characteristics improvements for proportional solenoid actuators are discussed.

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Nguyen, Dinh-Tuyen;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.448-457
    • /
    • 2012
  • This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.