• Title/Summary/Keyword: PWM AC-AC Boost Converter

Search Result 79, Processing Time 0.021 seconds

Design and Control of PWM Buck-Boost AC-AC Converter for Voltage Compensation (전압 보상을 위한 PWM Buck-Boost AC-AC 컨버터의 설계 및 제어)

  • Choi, Nam-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.166-169
    • /
    • 2003
  • In this paper, a PWM Buck-Boost AC-AC converter for improvement of power quality of custom power is presented. The PWM Buck-Boost AC-AC converter is modelled by using circuit DQ transformation whereby the design guideline is obtained. Based on the analysis, the converter system is implemented with the design criteria and the experimental results show the validity of modelling and analysis.

  • PDF

A Study on PWM Buck-Boost AC-AC Converter for Improvement of Power Quality of Custom Power (Custom Power의 전력품질 향상을 위한 PWM Buck-Boost AC-AC 컨버터에 대한 연구)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.129-132
    • /
    • 2002
  • In this paper, a PWM Buck-Boost AC-AC converter for improvement of power quality of custom power is presented. The PWM Buck-Boost AC-AC converter is modelled by using circuit DQ transformation whereby the both static and dynamic characteristics are analyzed completely. Finally, the converter system is implemented with the design criteria and the experimental results show the validity of modelling and analysis.

  • PDF

DSP-based Current Programmed Control of Three Phase PWM AC-AC Boost Converter (3상 PWM AC-AC 부스트 컨버터의 DSP 기반 전류 프로그램 제어)

  • Choi Nam-Sup;Li Yulong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. Compared to duty-ratio voltage control, current programmed control has several advantages such as reduction of system order, inherent current protection and robust output. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation and to establish some important characteristic equations for control purpose. The experiment results show the validity of the proposed scheme.

Circuit Topology and Characteristics of Three Phase PWM Noninverting Buck-Boost AC-AC Converter (3상 PWM 비반번 Buck-Boost AC-AC 컨버터의 회로구성과 특성)

  • Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.116-118
    • /
    • 2005
  • In this paper, a three phase PWM noninverting Buck-Boost AC-AC converter for WCF applications is presented. The PWM noninverting Buck-Boost AC-AC converter is modelled by using vector DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

Current-Programmed Control of Three Phase PWM AC-AC Boost Converter

  • Choi, Nam-Sup;Li, Yulong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.414-416
    • /
    • 2005
  • In this paper, a new scheme of current programmed control for three phase PWM AC-AC converter is presented. By considering only the magnitude components, a similar scheme in the DC-DC converter can be extended to the three phase PWM AC-AC converter. The proposed current programmed control will be well adopted into various converter topologies though three phase PWM AC-AC boost converter is treated as an example. The converter analysis is carried out by applying the vector DQ transformation to obtain physical insight into the converter operation. Finally, the experiment result shows the validity of the proposed scheme.

  • PDF

Characteristic Analysis of Three Phase PWM Boost AC-AC Converter Using Circuit DQ Transformation (회로 DQ 변환을 이용한 3상 PWM Boost AC-AC 컨버터의 특성해석)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1514-1519
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in three phase PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, PSIM simulation results show the validity of the Nosed modelling and analyses.

Dynamic Modeling and Controller Design of PWM Buck-Boost AC-AC Converter (PWM Buck-Boost AC-AC 컨버터의 동적 모델링 및 제어기 설계)

  • 최남섭;배영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.749-753
    • /
    • 2003
  • This paper presents an output voltage regulation system using PWM Buck-Boost AC-AC converter for power qualify improvement of custom power. This paper proposes dynamic modeling of the system for control object and in addition, a controller design example. Therefore, system state equation is derived whereby the transfer function could be obtained. The paper shows a regulation controller for tracking the output voltage to the reference under specific operating point. Finally, this paper shows validity and practical applicability of the proposed modelling and system design by experimental results.

  • PDF

Operating Characteristics Analysis of PWM Boost AC-AC Converter for Compensation of Voltage Sag (전압 Sag 보상을 위한 PWM Boost AC-AC 컨버터의 동작 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.315-319
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, simulation results show the validity of the proposed modelling and analyses.

  • PDF

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.169-176
    • /
    • 2005
  • In this paper, a DC and small-signal AC modeling for the active-clamp, ful1-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a dc counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM(Continuous conduction mode) boost and DCM(Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

Steady state Operatong Characteristics (PWM Buck-Boost AC-AC 컨버터의 정상상태 동작특성)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.430-434
    • /
    • 2002
  • Recently, lot of researchers pay attention to custom power equipments for power quality improvement, especially, voltage stabilization equipment using PWM AC-AC converter. In this paper, voltage regulation system with PWM Buck-Boost AC-AC converter is proposed and then the system is modelled and analyzed by using of Circuit DQ transformation whereby steady state characteristics such as equations for voltage gain and power factor are obtained. The equations become guide line for system design by showing the effect on system operations. Finally, some experiment will show validity of analysis.

  • PDF