• Title/Summary/Keyword: PVA bio-beads

Search Result 3, Processing Time 0.022 seconds

Characteristics of Immobilized PVA Beads in Nitrate Removal

  • Cho Kyoung-Sook;Park Kyoung-Joo;Jeong Hyun-Do;Nam Soo-Wan;Lee Sang-Joon;Park Tae-Joo;Kim Joong-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.414-422
    • /
    • 2006
  • Before applying PVA bio-beads to practical biological treatment of nitrate-containing wastewater, their characteristics were examined. PVA bio-beads could steadily produce nitrogen gas from nitrate for 28 batches with 0.04 ml/l/h of the maximum gas production rate; however, the maximum gas production rate dropped remarkably thereafter with apparent deformation of beads. Addition of 2.2% solution containing 1% casamino acid, 1% yeast extract, 0.1% mineral solution, and 0.1% vitamin solution to the culture medium resulted in not only recovery of activity of deactivated beads, but also a higher rate of gas production. Calculation of economic benefit for the use of bio-beads in a long-run operation indicated that reactivation of bio-beads by chemicals had economical advantages over packing new bio-beads in the system. The continuously stirred bioreactor exhibited a satisfactory performance at HRT of 20.0 h. With a 9.5 mg $NO_{3}^{-}N/l/h$ nitrate removal rate, nitrate could completely be removed without nitrite accumulation. The use of PVA bio-beads in nitrate removal appears very promising.

Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning

  • Park, Byung-Dae;Um, In Chul;Lee, Sun-Young;Dufresne, Alain
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.119-129
    • /
    • 2014
  • This work undertook to prepare nanofibers of cellulose nanofibrils (CNF)/polyvinyl alcohol (PVA) composite by electrospinning, and characterize the electrospun composite nanofibers. Different contents of CNFs isolated from hardwood bleached kraft pulp (HW-BKP) by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation were suspended in aqueous polyvinyl alcohol (PVA) solution, and then electrospun into CNF/PVA composite nanofibers. The morphology and dimension of CNFs were characterized by transmission electron microscopy (TEM), which revealed that CNFs were fibrillated form with the diameter of about $7.07{\pm}0.99$ nm. Morphology of the electrospun nanofiber observed by field-emission scanning electron microscopy (FE-SEM) showed that uniform CNF/PVA composite nanofibers were manufactured at 1~3% CNF contents while many beads were observed at 5% CNF level. Both the viscosity of CNF/PVA solution and diameter of the electrospun nanofiber decreased with an increase in CNF content. The diameter and its distribution of the electrospun nanofibers helped explain the differences observed in their morphology. These results show that the electrospinning method was successful in preparing uniform CNF/PVA nanofibers, indicating a great potential for manufacturing consistent and reliable cellulose-based nanofibrils for scaffolds in future applications.

활성 탈질미생물 Bio-bead의 특성

  • Park, Gyeong-Ju;Jo, Gyeong-Suk;Lee, Min-Gyu;Lee, Byeong-Heon;Kim, Jung-Gyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.378-381
    • /
    • 2003
  • The characteristics of bio-beads made of various supports, in which denitrifying bacteria were entrapped after those cells were isolated from sludge in wastewater treatment plants, were studied in order to develop a novel BNR system. Four species were isolated, and the bead made of 12% PVA showed the highest denitrification rate. The best concentration of cell loading was 200 mg/ml, and there was no significant difference in performance by bead sizes. The bead reached the maximum denitrification rate after 4 batch experiments, and with cell leaking of $10^3$ CFU/ml its capacity retained until 25 batches.

  • PDF